SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline		Scientific Data Vizualization					
2.2 Course coordinator		Conf. dr. Mihai SUCIU					
2.3 Seminar coordinator		Conf	Conf. dr. Mihai SUCIU				
2.4. Year of study 1 2	2.5 Semester	2 2.6. Type of evaluation E 2.7 Type of discipline Optional				Optional	
2.8 Code of the discipline	MME8059					•	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	1	3.3 seminar/laboratory	1sem
					+1pr.
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course sup	oport,	bibliography, course no	otes		28
Additional documentation (in libraries, on electronic platforms, field documentation)					28
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					14
Evaluations					21
Other activities:					
3.7 Total individual study hours 119					
3.8 Total hours per semester 175					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• Ability to work with an integrated development environment.
4.2. competencies	• Average programming skills. Basic math literacy is assumed.

7

5. Conditions (if necessary)

5.1. for the course	course room with video projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	• Ability to apply knowledge of computing and mathematics appropriate to the discipline;
 S	• Ability to analyse a problem, and identify and define the computing requirements
Professional competencies	appropriate to its solution;
ssic	• Ability to identify and to specify computing requirements of an application and to design,
ofe np(implement, evaluate, and justify computational solutions;
Pr cor	• Ability to use current techniques and skills to integrate available theory and tools necessary
	for applied computing practices.
	• Ability to apply mathematical foundations, algorithmic principles, and computer science
al ies	theory;
enc	• Ability to apply design and development principles in the construction of software systems;
nsv pet	• Ability to acquire knowledge properly in an application domain in the modelling and design;
Transversal competencies	• Ability to work effectively in a team.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• Be able to apply theories, principles and concepts with technologies to
discipline	design, develop, and verify computational solutions;
	• Be able to use data visualization (technique tool used to help researchers understand and/or interpret data)
7.2 Specific objective of the	• To assimilate data visualization techniques and the visualization as a
discipline	method of studying the real phenomenon. To gain skills related to problem solving through visualization of data.
	• To teach the students the concepts used in the field of modelling and visualization of simulation and to acquire the methods for validation of
	simulation using Scientific Data Visualization.
	• Know the main visualization techniques for scalar, vector, and tensor
	datasets and understand their strengths and limitations.
	• Be able to implement sophisticated interactive visualizations using open source software.
	• Be able to devise a complete visualization solution to study a practical dataset.
	• After promotion the students should be able to use data visualization as a method of solving real problems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Scientific data, Introduction	Expositions:	
2. Data visualization, Overview of Python	description,	
visualization libraries	explanation, class	
3. Visualization techniques, Plotting basics	lectures,	
4. Data visualization, Declarative vs. Procedural	Use of problems: use	
visualization	of problem questions,	
5. Data modelling, Perception	problems and	
6. Colors, Vector, and Bitmaps	problem situations.	
7. Grids and interpolation, Data Types and 1-D		
data		
8. Scalar field visualization		

9. Vector field visualization
10. Vector field visualization (II)
11. Tensor field visualization
12. Topological methods
13. Advanced flow visualization, Text and
Networks
14. High-dimensional data

Bibliography

- Andy Kirk. 2016. Data Visualisation: A Handbook for Data Driven Design. Sage Publications Ltd.
- Matthew O. Ward, Georges Grinstein, and Daniel Keim. 2015. Interactive Data Visualization: Foundations, Techniques, and Applications, Second Edition - 360 Degree Business (2nd. ed.). A. K. Peters, Ltd., USA.
- Telea, A. C. 2015. Data visualization: Principles and practice. Boca Raton: CRC Press.
- Georges-Pierre Bonneau, Thomas Ertl, and Gregory M. Nielson. 2005. Scientific Visualization: The Visual Extraction of Knowledge from Data (Mathematics and Visualization). Springer-Verlag, Berlin, Heidelberg.

8.2 Seminar / laboratory	Teaching methods	Remarks
 The first two seminars are dedicated to surveying information sources available on Internet and Intranet, and planning of the assignments. 	Expositions: description, explanation, introductive lectures. Conversations: debate, dialog, introductive conversations. Other methods: individual study, exercise, homework study	
 The next seven seminars (from three to nine) are dedicated to paper presentations. 	Conversations: debate, dialog. Discovery: discovery by documenting. Other methods: case	
 The project demos will be scheduled in the last three seminars. 	study; cooperation, individual study, homework study, company examples discussion of material.	
Bibliography		

1. Beatriz Sousa Santos, Introduction to Data and Information Visualization, Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, 2010 http://www.ieeta.pt/~bss/MAPI/Introduction-to-Vis-5-10.pdf

2. Brodlie, K., L. Carpenter, R. Earnshaw, J. Gallop, R. Hubbold, A. Mumford, C. Osland, P. Quarendon, Scientific Visualization, Techniques and Applications, Springer Verlag, 1992

3. Card, S., J. Mackinlay, B. Schneiderman (ed.), Readings in Information Visualization- Using Vision to Think, Morgan Kaufmann, 1999

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course exists in the curriculum of many universities in the world; •
- The results of course are considered by companies of software particularly useful and topical.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	- know the basic elements and concepts of the Scientific Data Visualization;	written exam	50%
10.5 Seminar/Project	- complexity, importance and degree of timeliness of the synthesis made	Paper presentation	10%
	 apply the course concepts problem solving	Project presentation	40%
10.6 Minimum performa	ance standards		
At least grade 5 at	written exam, paper presentatior	ns and project realised.	

Date April 12, 2021 Signature of course coordinator Conf. Dr. Mihai SUCIU

Signature of seminar coordinator Conf. Dr. Mihai SUCIU

Date of approval

.....

Signature of the head of department Prof. Dr. Laura DIOSAN