
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline Advanced Compiler Design

2.2 Course coordinator Assoc.Prof.PhD. Simona Motogna

2.3 Seminar coordinator Assoc.Prof.PhD. Simona Motogna

2.4. Year of

study

3 2.5

Semester

6 2.6. Type of

evaluation

C 2.7 Type of

discipline

Optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 4 Of which: 3.2 course 2 3.3

seminar/laboratory

1lab +

1 pr

3.4 Total hours in the curriculum 48 Of which: 3.5 course 24 3.6

seminar/laboratory

24

Time allotment: Hours

Learning using manual, course support, bibliography, course notes 20

Additional documentation (in libraries, on electronic platforms, field documentation) 30

Preparation for seminars/labs, homework, papers, portfolios and essays 30

Tutorship 22

Evaluations 25

Other activities: -

3.7 Total individual study hours 127

3.8 Total hours per semester 175

3.9 Number of ECTS credits 7

4. Prerequisites (if necessary)

4.1. curriculum • Formal Languages and Compiler Design course

4.2. competencies • Basic knowledge of front-end of a compiler

• Medium programming skills

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es
 C 4.1 Definition of concepts and basic principles of computer science, and of mathematical

theories an models

C 4.2 Interpretation of mathematical and computer science models (formal)

C 4.4 Use of simulation to study the behavior of models and to evaluate their performance

5.1. for the course •

5.2. for the seminar /lab

activities
• Laboratory: computers and use of a programming language

environment

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical

activities and creative capitalization of own potential, while respecting principles and rules for

professional ethics

CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and

develop capabilities for capitalization of knowledge, accomodation to society requirements and

communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Review compiler phases. Semantic analysis.

Define attribute grammar. [1,4]

Conversation: debate,

dialogue; exposuse:

description, explanation,

examples

2. Manual methods [2,4]: Control flow graph,

Data flow equations

exposure: description,

explanation, examples,

discussion of case studies

3. Symbolic interpretation [2,4] exposure: description,

explanation, example

4. Functions: activation record [2,3] exposure: description,

explanation, example;

dialogue, case studies

5. Static analysis – part 1 [2,3,4] exposure: description,

explanation, example,

dialogue, debate

6. Static analysis – part II [2,3,4] exposure: description,

explanation, example,

discussion of case studies

7. Compiler design for imperative and object-

oriented languages (I): Identification, Type

checking, Type table, Source Language Data

Representation & Handling [2]

exposure: description,

explanation, example,

dialogue, debate, case

studies

8. Compiler design for imperative and object-

oriented languages (II):, Functions- activation

records, Object Type, Inheritance,

Polymorphism [2,3]

exposure: description,

explanation, example,

case studies, dialogue,

debate

9. Compiler design for functional languages [2,3] exposure: description,

explanation, example,

case studies, dialogue,

debate

10. Compiler design for logical languages [2,3] exposure: description,

explanation, example,

case studies, dialogue,

debate

7.1 General objective of the

discipline

• Be able to understand compiler design and to implement compiler

techniques

• Be able to understand compiler optimizations

• Improved programming skills

7.2 Specific objective of the

discipline

• Acquire knowledge about back-end of a compiler

• Understand concepts: virtual machine, JIT compilation, compiler

optimizations, machine code generation

11. Memory management: Garbage Collection

mechanism [2,3,5]

exposure: description,

explanation, example,

case studies, dialogue,

debate

12. Java Language Design [3,5] exposure: description,

explanation, example,

case studies, dialogue,

debate

13. .NET Language Design [4,5,6] exposure: description,

explanation, example,

case studies, dialogue,

debate

14. Final written exam evaluation

Bibliography

1. GRUNE, DICK - BAL, H. - JACOBS, C. - LANGENDOEN, K.: Modern Compiler Design, John Wiley,

2000

2. MITCHELL, JOHN: Foundations for Programming Languages, MIT Press, 1996

3. MOTOGNA, SIMONA: Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

4. RICHTER, J.: Applied Microsoft .NET Framework Programming, Microsoft Press, 2002

5. LIDIN, SERGE: Inside .NET IL Assembler, Microsoft Press International, 2002

6. STUTZ, DAVID - NEWARD, TED - SHILLING, GEOFF: Shared Source CLI Essentials, O'Reilly UK,

2003

7. Sun Java Systems, [http://docs.sun.com/db/prod/java.sys], 01.09.2004

8.2 Seminar / laboratory Teaching methods Remarks

1. Task 1: Create an attribute grammar and write

a program for attribute evaluation

1.1 define attribute grammar

Explation, dialogue, case

studies

Professor will

assigned a specific

statement to be

modelled with

attribute grammars

2. Task 1: Create an attribute grammar and write

a program for attribute evaluation

1.2 refine attribute grammar to satisfy

evaluator restrictions

Explation, dialogue, case

studies

3. Task 1: Create an attribute grammar and write

a program for attribute evaluation

1.3 program for attribute evaluation

Explation, dialogue, case

studies

4. Task 1: Create an attribute grammar and write

a program for attribute evaluation

1.4 testing of the evaluator and deliver the

program

Evaluation

5. Task 2: Intermediary code generation

2.1: form of intermediary code; data staructure

for intermediary code

Explation, dialogue, case

studies

Professor will

assigned a specific

statement to be

transformed to

intermediary code

6. Task 2: Intermediary code generation

2.2: program for intermediary code generation

Explation, dialogue, case

studies

7. Task 2: Intermediary code generation

2.3:testing and delivery of the program

Evaluation

8. Task 3: Apply optimization technique to a

fragment of 3 address code

3.1 case study: chosen optimization technique

Explation, dialogue, case

studies

Optimization will be

applied for the result

of task 2

9. Task 3: Apply optimization technique to a

fragment of 3 address code

Explation, dialogue, case

studies

3. 2 implement optimization

10. Task 3: Apply optimization technique to a

fragment of 3 address code

3.3 testing and delivery

Evaluation

11. Task 4: Object code generation. Transform it to

object code, using a minimum number of

registers, determined based on the number of

live variables.

4.1 Algorithm for determining the number of

live variables and minimal number of registers

Explation, dialogue, case

studies

Object code will be

generated for output

of task 3

12. Task 4: Object code generation

4.2 Implement object code generation

Explation, dialogue, case

studies

13. Task 4: Object code generation

4.3 testing and delivery

Evaluation

14. Final laboratory: final presentation of tasks Evaluation

Bibliography

 Same as course & course notes

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;

• The course exists in the studying program of all major universities in Romania and abroad;

• The content of the course is considered the software companies as important for advanced

programming skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course - know the basic principle of

the domain;

- apply the course concepts

- understand advanced topics

in the field

Written exam

50%

10.5 Seminar/lab activities - be able to implement course

concepts and algorithms

- apply techniques for

different classes of

programming languages

-Practical examination

-documentation

-portofolio

-continous observations

50%

10.6 Minimum performance standards
 At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date Signature of course coordinator Signature of seminar coordinator

.................. Assoc.Prof.PhD. Simona MOTOGNA Assoc.Prof.PhD. Simona MOTOGNA

Date of approval Signature of the head of department

... …............................

