SYLLABUS # ${\bf 1.}\ Information\ regarding\ the\ programme$ | 1.1 Higher education | Babes-Bolyai University | |-----------------------|----------------------------------| | institution | | | 1.2 Faculty | Mathematics and Computer Science | | 1.3 Department | Computer Science | | 1.4 Field of study | Computer Science | | 1.5 Study cycle | Bachelor | | 1.6 Study programme / | Computer Science | | Qualification | | ## 2. Information regarding the discipline | 2.1 Name of the | dis | scipline | De | Design of interactive software systems | | | | | |-------------------------|-----|----------|---------------------------------------|--|---|-------------|----------|--| | 2.2 Course coor | din | ator | Ph. D. Lecturer Adriana-Mihaela Guran | | | | | | | 2.3 Seminar coordinator | | | Ph. D. Lecturer Adriana-Mihaela Guran | | | | | | | 2.4. Year of | 3 | 2.5 | 5 | 2.6. Type of | C | 2.7 Type of | Optional | | | study | | Semester | | evaluation | | discipline | | | ## **3. Total estimated time** (hours/semester of didactic activities) | 3.1 Hours per week | 4 | Of which: 3.2 course | 2 | 3.3 | 2 | |---|----|----------------------|----|--------------------|-------| | | | | | seminar/laboratory | | | 3.4 Total hours in the curriculum | 56 | Of which: 3.5 course | 28 | 3.6 | 28 | | | | | | seminar/laboratory | | | Time allotment: | | | | | hours | | Learning using manual, course support, bibliography, course notes | | | | | 15 | | Additional documentation (in libraries, on electronic platforms, field documentation) | | | | | 7 | | Preparation for seminars/labs, homework, papers, portfolios and essays | | | | | 16 | | Tutorship | | | | | 4 | | Evaluations | | | | | 2 | | Other activities: | | | | | | | 0.5.5 | | 4.4 | | | | | 3.7 Total individual study hours | 44 | |----------------------------------|-----| | 3.8 Total hours per semester | 100 | | 3.9 Number of ECTS credits | 4 | # **4. Prerequisites** (if necessary) | 4.1. curriculum | • | |-------------------|---| | 4.2. competencies | • | ## **5. Conditions** (if necessary) | 5.1. for the course | A room with Internet access and presentation devices | |---------------------------|--| | 5.2. for the seminar /lab | A room with computers and Internet access | | activities | | 6. Specific competencies acquired | | C3.1 Description of concepts, theories and models used in the application domain (HCI) | |---------------------------|---| | ompeten | • C3.2 Identification and explanation of basic informatic models for the application domain (HCI) | | Professional competencies | C3.3 Use of informatic and mathematical models and tools to solve domain specific
(HCI) problems | | Profe | C3.5 Design and development of software components for interdisciplinary projects | | Transversal competencies | CT1 Application of efficient and organized work rules, of responsible attitudes towards the didactic-scientific domain, to creatively value one's own potential, with the respect towards the principles and norms of professional etic. CT2 Efficient fulfillment of organized activities in an interdisciplinary group and development of empathic abilities of interpersonal communication, relationship and collaboration with various groups CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities to value the knowledge, to adapt to requirements of a dynamic society and to communicate in Romanian language and in a language of international circulation | # **7. Objectives of the discipline** (outcome of the acquired competencies) | 7.1 General objective of the discipline | Students will understand the role of interdisciplinary approaches in the design of interactive software systems | | | |--|---|--|--| | | Students will learn how to apply user centered design methods | | | | 7.2 Specific objective of the discipline | At the end of the semester students must be able to: | | | | discipline | Identify users needs and translate them into requirements | | | | | Design usable and accessible interactive systems | | | | | Assess the usability of software products and find recommendations to improve it | | | | | Develop interactive systems for people with disabilities | | | ### 8. Content | o. content | | | |----------------------------------|-------------------|---------| | 8.1 Course | Teaching methods | Remarks | | 1. Introduction | Presentation, | | | • What is HCI? | discussions, case | | | HCI history | studies, problem | | | Interdisciplinary aspects of HCI | solving | | | Why studying HCI | | | | HCI in the carrer of a software | | |--|---------------------------------| | | | | developer/designer | | | | | | 2. Interaction components:THE HUMAN | Presentation, | | Perception | discussions, case | | Memory | studies, problem | | • | solving | | Problem solvingMental models | sorving | | | | | Human Error THE COMPLETED | D. C. | | 3. Interaction components: THE COMPUTER | Presentation, discussions, case | | Input/output channels | studies, problem | | Output devices | solving | | Data storage | Solving | | Data processing | | | Virtual reality and 3D interaction devices | | | 4. Interaction Components: THE DIALOGUE | Presentation, | | Interaction Components: THE DIALOGUE Interaction models | discussions, case | | | studies, problem | | Interaction stylesWIMP interfaces | solving | | | Solving | | Dialogue description methods | | | • | | | 5. User requirements identification methods | Presentation, | | Task analysis | discussions, case | | Hierachical Task Analysis, Groupware Task | studies, problem | | Analysis Analysis | solving | | Task Analysis Tools: CTTE, Euterpe | | | Task Analysis 100is. CTTL, Euterpe | | | 6. Interaction models | Presentation, | | Cognitive models | discussions, case | | Linguistic models | studies, problem | | Physical models | solving | | · | | | 7. Interaction design | Presentation, | | Interaction design process | discussions, case | | • Personas | studies, problem | | Navigation design | solving | | Prototying | | | | | | 8. Designing for accessibility | Presentation, | | • Disabilities | discussions, case | | Accesibility | studies, problem | | Accessibility standards | solving | | Accessibility assesments tools | | | 9. Presentation design (1) | Presentation, | | Widgets | discussions, case | | Criteria, recommendations for widgets usage | studies, problem | | | solving | | 10. Presentation design (2) | Presentation, | | Criteria, recommendations for widgets usage | discussions, case | | | studies, problem | | | solving | |--|----------------------| | 11. Information Architecture | Presentation, | | Grouping | discussions, case | | • Flow | studies, problem | | • Focus | solving | | • Layout | | | 10.11.177 | D | | 12. Usability | Presentation, | | • Definitions | discussions, case | | Concept operationalization | studies, problem | | Usability problems | solving | | Usability heuristics | | | 13. Usability Assesment | Presentation, | | What is usability assesment? | discussions, case | | Usability Assesment goals | studies, problem | | Usability Assesment Techniques | solving | | Coulding Assessment Teeninques | | | 14. Assesment | Discussions, problem | | Team project presentation and evaluation | solving | | | | #### Bibliography: - 1. Alan Dix, Janet Finlay, Gregory D Abowd, Russell Beale Human-Computer Interaction, Prentice Hall, third edition, 2004 - 2. Donald A. Norman Emotional Design Why we love (or hate) everiday things, basic Books, 2004 - 3. Martijn van Welie Task-based User Interface Design, 2001 - 4. Donald A Norman The design of everyday things, basic Books, 1988 - 5. Fabio Paterno Model-based design and evaluation of interactive applications, Springer, 1999 - 6. Jennifer Tidwell Designing Interfaces: Patterns for Effective Interaction Design, O'Reilly, 2005 - 7. Jacob Nielsen Usability Engineering, Academic Press, 1993 - 8. Adriana Guran Proiectarea sistemelor interactive, Casa Cartii de Stiinta, 2009, 210 pagini - 9. Dan Saffer Designing for Interaction, 2009, ISBN 978-0321432063 - 10. http://www.cs.ubbcluj.ro/~adriana/Teaching.html (prezentari PowerPoint) - 10.Tom Tullis, William Albert Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008 | 8.2 Seminar / laboratory | Teaching methods | Remarks | |---|-----------------------|---------| | Finding examples of bad designed objects and | Discussion, Problem | | | improvements proposal | solving, case studies | | | | | | | Usability teasting with real users of an application | Discussion, Problem | | | previously developed during laboratory classes for | solving, case studies | | | other subjects (ex. databases) | | | | Accessibility assesment of a web page of large interest | Discussion, Problem | | | using an automatic tool | solving, case studies | | | Development of a small accessible application | | | | Heuristic usability evaluation of an application | Discussion, Problem | | | | solving, case studies | | | Project: user centered design of an interactive | | | | application | | | | | | | # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - The curricula of this course aligns to the guidelines of ACM and IEEE - The software organisations recognize the importance of the concepts discussed during this course for the development of usable and user-friendly products #### 10. Evaluation | Type of activity | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Share in the grade (%) | | |---|---|---|-----------------------------|--| | 10.4 Course | Technical report | Grading for the technical report will be done based on the following criteria: • State of the art in the approached subject • Identification of new problems/solutions to be studied • Quality of references • Oral presentation | 10% | | | 10.5 Seminar/lab activities | Project – design of an interactive software application using a User Centered Approach and evaluate its usability | Oral presentation of the designed product. The product must be accompanied by the documentation describing the design process, the design decisions and the usability evaluation results. | 60% | | | | Laboratory Activity | | 30% | | | 10.6 Minimum performance | e standards | | | | | Students have to deliver a working software product that satisfies the client requirements. | | | | | | Date | Signature of course coordinator | Signature of seminar coordinator | | |------------------|-------------------------------------|----------------------------------|--| | 17.04.2018 | Ph. D. Lecturer Adriana Guran | Ph. D. Lecturer Adriana Guran | | | Date of approval | Signature of the head of department | | | | | Ph. I | Ph. D. Prof. Anca Andreica | |