

SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Formal Languages and Compiler Design

2.2 Course coordinator Assoc.Prof.PhD. Simona Motogna

2.3 Seminar coordinator Assoc.Prof.PhD. Simona Motogna

2.4. Year of study 3 2.5 Semester 5 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

2.8 Code of the

discipline

MLE5023

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 6 Of which: 3.2 course 2 3.3

seminar/laboratory

2sem

+ 2lab

3.4 Total hours in the curriculum 84 Of which: 3.5 course 28 3.6

seminar/laboratory

56

Time allotment: hours

Learning using manual, course support, bibliography, course notes 15

Additional documentation (in libraries, on electronic platforms, field documentation) 8

Preparation for seminars/labs, homework, papers, portfolios and essays 10

Tutorship 3

Evaluations 5

Other activities: -

3.7 Total individual study hours 41

3.8 Total hours per semester 125

3.9 Number of ECTS credits 5

4. Prerequisites (if necessary)

4.1. curriculum • Data Structures and Algorithms

4.2. competencies • Average programming skills in a high level programming language

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es
 • C4.1 Definition of concepts and basic principles of computer science, and their mathematical models

and theories
 • C4.2 Interpretation of mathematical and computer science models
 • C4.5 Adoption of formal models in specific applications from different domains

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es
 CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical activities

and creative capitalization of own potential, while respecting principles and rules for professional ethics

CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop

capabilities for capitalization of knowledge, accomodation to society requirements and communication in

English

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. General Structure of a compiler. Compiler phases Exposure: description,
explanation, examples,
discussion of case
studies

2. Scanning (Lexical Analysis) Exposure: description,
explanation, examples,
discussion of case
studies

3. Introductory notions of formal languages.
Grammars and Finite Automata

Exposure: description,
explanation, examples,
debate, dialogue

4. Regular languages, regular expressions, Exposure: description,

5.1. for the course •

5.2. for the seminar /lab

activities

• Laboratory with computers; high level programming language environment

(.NET or any Java environement a.s.o.)

7.1 General objective of the

discipline

• Be able to understand compiler design and to implement compiler
techniques

• Improved programming skills

7.2 Specific objective of the

discipline

• Acquire knowledge about back-end of a compiler

• Understand and work with formal languages concepts: Chomsky hierarchy;
regular grammars, finite automata and the equivalence between them;
context-free grammars, push-down automata and their equivalence

• Understand and work with compilers concepts: scanning, parsing

equivalence between finite automata, regular
grammars and regular expressions. Pumping
lemma

explanation, examples,
proofs

5. Context-free grammars, syntax tree Exposure: description,
explanation, examples,
discussion of case
studies

6. Parsing: general notions, classification. Exposure: description,
explanation, examples,
discussion of case
studies

7. Recursive-descendant parser Exposure: description,
explanation, examples,
discussion of case
studies

8. LL(1) parser Exposure: description,
explanation, examples,
discussion of case
studies

9. LR(k) Parsing method. LR(0) parser Exposure: description,
explanation, examples,
discussion of case
studies

10. SLR, LR(1), LALR parser Exposure: description,
explanation, examples,
discussion of case
studies

11. Scanner generator (lex); Parser generators (yacc) Exposure: description,
examples, discussion of
case studies, live demo

12. Attribute grammars; generation of

intermediary code

Exposure: description,
explanation, examples,
discussion of case
studies

13. Code optimization and object code generation Exposure: description,
explanation, examples,
discussion of case
studies

14. Push-down automata and Turing machines Exposure: description,
explanation, examples,
discussion of case
studies

Bibliography
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972,
1973.
3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.
4. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
5. SIPSER, M., Introduction to the theory of computation, PWS Pulb. Co., 1997
6. CSÖRNYEI ZOLTÁN, Bevezetés a fordítóprogramok elméletébe, I, II., ELTE, Budapest, 1996
7. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.
8. CSÖRNYEI ZOLTÁN, Fordítási algoritmusok, Erdélyi Tankönyvtanács, Kolozsvár, 2000.
9. DEMETROVICS JÁNOS-DENEV, J.-PAVLOV, R., A számítástudomány matematikai alapjai, Nemzeti Tankönyvkiadó,

Budapest, 1999
10. GRUNE, DICK - BAL, H. - JACOBS, C. - LANGENDOEN, K.: Modern Compiler Design, John Wiley, 2000

8.2 Seminar Teaching methods Remarks

1. Specification of a programming language; BNF
notation

Explanation, dialogue,
case studies

2. Grammars; language generated by a grammar;
grammar corresponding to a language

Dialogue, debate, case
studies, examples,
proof

3. Finite automata: language generated by a FA; FA
corresponding to a language

Dialogue, debate, case
studies, examples,
proof

4. Transformations: finite automata – regular
grammars

Dialogue, debate, case
studies, examples,
proof

5. Transformations: regular expressions – finite
automata

Dialogue, debate, case
studies, examples,
proof

6. Transformations: regular expressions – regular
grammars

Dialogue, debate, case
studies, examples,
proof

7. Context free grammars; descendent recursive
parser

Dialogue, debate, case
studies, examples,
proof

8. LL(1) parser Dialogue, debate, case
studies, examples,
proof

9. LR(0) parsers Dialogue, debate, case
studies, examples,
proof

10. SLR parser Dialogue, debate, case
studies, examples,
proof

11. LR(1) parser Dialogue, debate, case
studies, examples,
proof

12. Attribute grammars Dialogue, debate, case
studies, examples,
proof

13. Intermediary code Dialogue, debate, case
studies, examples,
proof

14. Push down automata Dialogue, debate, case
studies, examples,
proof

8.2 Seminar Teaching methods Remarks
1. Task 1: Specify a mini-language and implement scanner
1.1: Mini language specification (BNF notation)

Explanation, dialogue,
case studies

2. Task 1: Specify a mini-language and implement scanner
1.2: implement main functions in scanning

Explanation, dialogue,
case studies

3. Task 1: Specify a mini-language and implement scanner
1.3: Symbol Table organization

Explanation, dialogue,
case studies

4. Task 1: Specify a mini-language and implement scanner Testing data discussion,

1.4: Main program, testing + delivery evaluation

5. Task 2: regular grammars + finite automata +
transformations
2.1: Define data structures for RG and FA; implement
transformations

Explanation, dialogue,
case studies

6. Task 2: regular grammars + finite automata +
transformations
2.2: Main program, testing + delivery

Testing data discussion,
evaluation

7. Task 3: context free grammars + equivalent
transformations of cfg
 3.1: extend task 2 for cfg; implement transformations

Explanation, dialogue,
case studies

8. Task 3: context free grammars + equivalent
transformations of cfg
3.2: Main program, testing + delivery

Testing data discussion,
evaluation

9. Task 4: Parser implementations
 4.1: define data structures and architecture of application

Explanation, dialogue,
case studies

One of: descendant
recursive, LL(1), LR(0), SLR

10. Task 4: Parser implementations
 4.2: implement main functions in parsing

Explanation, dialogue,
case studies

Task 4 is developed in teams
of 2 students

11. Task 4: Parser implementations
 4.3: main program and module integration

Explanation, dialogue,
case studies

12. Task 4: Parser implementations
4.4: testing on small formal grammars

Testing data discussion,
evaluation

13. Task 4: Parser implementations
 4.5: testing on mini-language; delivery

Testing data discussion,
evaluation

14. Task 5: use tools for lexer and parser generator: lex,
yacc – implementation + delivery

Explanation, dialogue,
case studies

Bibliography
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972,
1973.
3. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
4. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ. Babes-Bolyai,
Cluj-Napoca, 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;

• The course exists in the studying program of all major universities in Romania and abroad;

• The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course - know the basic principle of
the domain;
- apply the course concepts
 - problem solving

Written exam 70%

10.5 Seminar and lab - be able to apply algorithms, problems solved - homeworks 10%

activities understand examples -
problem solving

delivered - continuous
observations during semester

- be able to implement
course concepts and
algorithms
 - apply techniques for
different classes of
programming languages

-Practical examination during
all semester -documentation -
portofolio -continous
observations

20%

10.6 Minimum performance standards
 Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester

 At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date Signature of course coordinator Signature of seminar coordinator

14.04.2020 Assoc.Prof.PhD. Simona MOTOGNA Assoc.Prof.PhD. Simona MOTOGNA

Date of approval Signature of the head of department

... Prof.dr. Laura Dioșan

