SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Probability Theory and Statistics							
2.2 Course coordinator				Assoc. Prof. PhD. Habil. Sanda Micula			
2.3 Seminar coordinator				Assoc. Prof. PhD. Habil. Sanda Micula			
2.4. Year of	2	2.5	3	2.6. Type of E 2.7 Type o			Compulsory
study		Semester		evaluation		discipline	
2.8 Course Code MLE0031			31				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					9
Evaluations				20	
Other activities:				-	
3.7 Total individual study hours		94			
3.8 Total hours per semester		150			

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis	
	• Algebra	
4.2. competencies	Logical thinking	
	Average logical programming skills	

5. Conditions (if necessary)

5.1. for the course• Lecture room with large blackboard and video projecto	r
--	---

5.2. for the seminar /lab	•	For seminar: room with large blackboard
activities	•	For lab: Laboratory with computers having Matlab installed

6. Specific competencies acquired

Professional competencies	C4.1 Defining basic concepts, theory and mathematical models C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving real-life problems C4.5 Embedding formal models in applications from various areas
Transversal competencies	CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory and Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various probabilistic and statistical models Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Experiments, events, field of events, operations with events. Axiomatic definition of probability. Poincaré's formula. Classical definition of probability. Conditional probability. Independent events. Total probability formula. Classical probabilistic models (Binomial, Hypergeometric, Poisson, Pascal, Geometric). 	 Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration 	
3. Random variables and random vectors. Discrete random variables. Probability distribution function. Cumulative distribution function. Properties, examples.	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Discrete probability laws (Bernoulli, Binomial, Hypergeometric, Poisson, Negative Binomial, Geometric). Discrete random vectors. Operations with discrete random variables. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Continuous random variables. Probability density function. Continuous probability	• Interactive exposure	

laws (Uniform, Normal, Gamma,	• Explanation	
Exponential, Chi-square, Student, Fisher).	Conversation	
Independent random variables. Functions of	Didactical demonstration	
continuous random variables.	.	
6. Numerical characteristics of random	• Interactive exposure	
variables. Expectation. Variance. Moments	• Explanation	
(initial, central, absolute). Covariance and	Conversation	
correlation coefficient. Quantile, median,	 Didactical demonstration 	
quartiles. Inequalities (Markov, Chebyshev).	- ·	
7. Stochastic processes. Markov chains.	• Interactive exposure	
Transition probability matrix. Steady-state	• Explanation	
distribution. Regular Markov chains.	Conversation	
Periodic Markov chains. Examples	Didactical demonstration	
8. Descriptive statistics. Data collection.	• Interactive exposure	Video projector
Graphical display of data. Frequency	Explanation	presentation
distribution and histograms. Parameters of a	Conversation	
statistical distribution. Measures of central	Didactical demonstration	
tendency. Measures of variation. Correlation		
and regression. Linear regression.		
9. Sample theory. Samples. Sample functions	Interactive exposure	
(sample mean, sample variance, sample	Explanation	
moments). Confidence intervals for	Conversation	
estimating the population mean and the	• Didactical demonstration	
population variance. Confidence intervals		
for comparing two population means and		
two population variances.		
10. Estimation theory. Properties of point	• Interactive exposure	
estimators. Unbiased and minimum variance	Explanation	
estimators. Standard error. Likelihood	Conversation	
function. Fisher's information. Examples.	Didactical demonstration	
11. Absolutely correct estimators. The Rao-	Interactive exposure	
Cramer inequality. Efficient estimators.	• Explanation	
Methods of estimation. The method of	Conversation	
moments estimator, the method of maximum	Didactical demosntration	
likelihood estimator. Examples.		
12. Hypothesis testing. Rejection region. Type I	Interactive exposure	
errors. Significance testing and P-values.	Explanation	
The Z-test for the mean. Examples.	Conversation	
	• Didactical demonstration	
13. The T (Student)-test for the mean. The Chi-	Interactive exposure	
square-test for the variance. The F-test for	Explanation	
the ratio of variances. Tests for the	Conversation	
difference of means. Examples. Robust	 Didactical demonstration 	
tests.		
14. Type II errors and the power of a test. Most	Interactive exposure	
powerful tests and the Neyman-Pearson	Explanation	
lemma. Uniformly most powerful tests.	Conversation	
Examples.	 Didactical demonstration 	
Bibliography		

Bibliography

1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.

2. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.

3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

 Blaga, P., Calculul probabilitatilor si statistica Universitatea "Babes-Bolyai" Cluj-Napoca, 19 Feller, W., An introduction to probability th Wiley, New York, 2008. DeGroot, M. H., Schervish, M. J., Probability 	994. heory and its applications, Vol. 1, 3	3 rd edition, WSE
8.2 Seminar	Teaching methods	Remarks
 Euler's Functions; Properties. Counting, Outcomes, Events. 	 Interactive exposure Explanation Conversation 	The seminar is structured as 2 hours per week, every other week
2. Classical Probability; Rules of Probability; Conditional Probability; Independent Events.	 Interactive exposure Explanation Conversation Individual and group work 	
3. Probabilistic models.	 Interactive exposure Conversation Synthesis Individual and group work 	
 Discrete random variables and discrete random vectors. 	 Interactive exposure Explanation Conversation Individual and group work 	
 Continuous random variables and continuous random vectors. 	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
6. Numerical characteristics of random variables.	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
 Inequalities; Central Limit Theorem; Markov Chains; Point Estimators. 	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
8.3 Laboratory	Teaching methods	Remarks
1. Introduction to Matlab.	 Interactive exposure Explanation Conversation Individual and group work 	The lab is structured as 2 hours per week, every other week
2. Discrete random variables; Probability distribution function; Command PDF in Matlab.	Interactive exposureExplanationConversation	

	Individual and group work
 Continuous random variables; Probability density function; CDF and Inverse CDF. 	 Interactive exposure Explanation Conversation Individual and group work
 Numerical characteristics of random variables; Random number generators (command RND in Matlab); Computer simulations of discrete random variables. 	 Interactive exposure Synthesis Conversation Individual and group work
 Descriptive Statistics; Statistical measures; Correlation and regression; Confidence intervals for means and variances. 	 Interactive exposure Explanation Conversation Individual and group work
 Hypothesis and significance testing for means and variances. 	 Interactive exposure Explanation Conversation Individual and group work
7. Overview of statistical methods.	 Interactive exposure Explanation Conversation Individual work

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.
- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	- acquire the basic	Written exam on problems	50%
	principles in Probability	only (a sheet with the main	

	Theory and Mathematical Statistics; - be able to apply correctly the course concepts on various applications - problem solving	probabilistic and statistical formulas is available)		
10.5 Seminar activities	 be able to apply course concepts and techniques on practical problems be able to choose and apply the right probabilistic or statistical model to various practical problems problem solving 	 participation in discussing and solving problems throughout the semester additional documentation individual presentation of solutions solving bonus problems 	25%	
10.6 Lab activities	 be able to implement course concepts and algorithms in Matlab be able to solve numerical statistical problems in Matlab 	 participation in discussing and solving problems throughout the semester lab exam (numerical statistical applications) 	25%	
10.7 Minimum performance standards				
A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> of the three activities mentioned above (written test, seminar evaluation, lab evaluation)				

Date	Signature of course coordinator	Signature of seminar coordinator
11.04.2021	Assoc. Prof. PhD. Habil. Sanda Micula	Assoc. Prof. PhD. Habil. Sanda Micula

Date of approval

Signature of the head of department

.....

.....