SYLLABUS

1. Information regarding the	Y- *8- ******
1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disc	ipli	ne Geometry	Geometry				
2.2 Course coordinator		Lect. Dr. Iulian Simion					
2.3 Seminar coordinator			Lect. Dr. Iulian Simion				
2.4 Year of study	1	2.5 Semester	2 2.6. Type of evaluation VP 2.7 Type of Comput			Compulsory	
	discipline						
2.8 Disciplinei code MLE0014			•		•		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar	28	
Time allotment:						
Learning using manual, course support,	biblio	graphy, course notes			20	
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays					14	
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours69						
3.8 Total hours per semester 125						
3.9 Number of ECTS credits 5						

4. Prerequisites (if necessary)

4.1 curriculum	Basic knowledege in algebra and calculus.
4.2 competencies	Competencies of using the above mentioned curricula.

5. Conditions (if necessary)

5.1 for the course	
5.2 for the seminar /lab activities	

6. Specific competencies acquired

-	1 1
encies	• C1.1 Identifying the notions, describing the theories and using the specific language
Professional competencies	• C2.3 Applying the adequate analytical theoretical methods to a given problem
ansversal competencies.	CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the the scientific domain and teaching training for an optimal and creative
compe	development of the personal potential in specific situations, respecting the deontological norms.
sversal	
Trans	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Basic notions and methods în the context of analytic geometry
discipline	
7.2 Specific objective of the	Classification of quadratic curves and surfaces
discipline	

8. Content

8.1 Course	Teaching methods	Remarks
1. Geometric vectors	Exposition, proofs,	
Vector space structure	examples	
Cartesian coordinate frames		
2-3. Scalar product and vector product	Exposition, proofs,	Two lectures
Orthonormal frames	examples	
Box product		
Classical identities		
4-5. Lines în dimension 2	Exposition, proofs,	Two lectures
• Different equations for a line	examples	
Normal vectors		
Relative positions of lines		
Pencils of lines		
Planes în dimension 3		
• Different equations for a plane		
Normal vectors		
Lines în dimension 3		
• Different equations for a line		

Relative positions of lines and planes		
6. Affine maps	Exposition, proofs,	
Changing coordinates	examples	
Parallel projections and reflections	1	
7. Isometries	Exposition, proofs,	
• Rotations în dimension 2 and 3	examples	
Spectral theorem	1	
8-9. Quadratic curves	Exposition, proofs,	Two lectures
• Ellipse, hyperbola, parabola	examples	
Canonical equations	1	
• Relative position of a line		
Tangent lines		
10. Classification of quadrics (dimension 2 and 3)	Exposition, proofs,	
Reducing to canonical form	examples	
Isometric classification of quadrics	1	
Affine classification of quadrics		
11-12. Quadratic surfaces	Exposition, proofs,	Two lectures
• Ellipsoid, Cone, Hyperboloid, Paraboloid	examples	
Canonical equation	1	
Tangent planes		
13-14. Quaternions	Exposition, proofs,	Two lectures
Algebraic description	examples	
Quaternions and rotations		
Bibliography	I	
[1] I. Simion, Geometry – material de curs, 2021.		
[2] P.A. Blaga, Geometrie – material de curs, 2019.		
[3] M. Troyanov, Cours de géométrie, Lausanne, 20	11.	
[4] E. Sernesi, Linear Algebra. A geometric Approad	ch (Translated by J. Montal	di), 2009.
8.2 Seminar	Teaching methods	Remarks
1. Geometric vectors	Dialog, problem solving	
Vector space structure		
Cartesian coordinate frames		
2-3. Scalar product and vector product	Dialog, problem solving	Two tutorials
Orthonormal frames		
Box product		
Classical identities		
4-5. Lines în dimension 2	Dialog, problem solving	Two tutorials
• Different equations for a line		
Normal vectors		
Relative positions of lines		
Pencils of lines		
Planes în dimension 3		
• Different equations for a plane		
Normal vectors		

Lines în dimension 3						
• Different equations for a line						
Relative positions of lines and planes						
6. Affine maps	Dialog, problem solving					
Changing coordinates						
Parallel projections and reflections						
7. Isometries	Dialog, problem solving					
• Rotations în dimension 2 and 3						
Spectral theorem						
8-9. Quadratic curves	Dialog, problem solving	Two tutorials				
• Ellipse, hyperbola, parabola						
Canonical equations						
• Relative position of a line						
Tangent lines						
10. Classification of quadrics (dimension 2 and 3)	Dialog, problem solving					
Reducing to canonical form						
Isometric classification of quadrics						
Affine classification of quadrics						
11-12. Quadratic surfaces	Dialog, problem solving	Two tutorials				
• Ellipsoid, Cone, Hyperboloid, Paraboloid						
Canonical equation						
Tangent planes						
13-14. Quaternions	Dialog, problem solving	Two tutorials				
Algebraic description	6,1 6					
Quaternions and rotations						
Bibliography						
[1] I. Simion, Geometry – material de curs, 2021.						
[2] P.A. Blaga, Geometrie – material de curs, 2019.						
[3] M. Troyanov, Cours de géométrie, Lausanne, 20	11.					
[4] E. Sernesi, Linear Algebra. A geometric Approac		di), 2009.				
9. Corroborating the content of the discipline wi	· ·					
professional associations and representative employers within the field of the program						
• The material of this course serves other of						
• a deeper understanding of linear alge	bra					
 affine transformations are necessary 		y course				

- coordinate changes, projections, affine transformations are necessary for computer graphics
- Applications of the theory are presented wherever appropriate

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Critical grasp of the	Two written partial exams	each 50%
	learned material, ability to	at the middle and at the end	

	use what was learned	of the semester				
10.5 Seminar	Ability to use the theory for solving problems	Points during the tutorial for active participation	Can lead up to one extra point for the final grade			
10.6 Minimum performance standards At least grade 5 for the final grade.						

Date

Signature of course coordinator

Signature of seminar coordinator

12. February 2022

Lect. Dr. Iulian Simion

Lect. Dr. Iulian Simion

Date of approval

Signature of the head of department

.....

Prof. Dr. Octavian Agratini