SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master's degree
1.6 Study programme /	Artifficial intelligence-related master programs
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Introduction to Automated Driving					
(ro)			Introducere in conducerea automata				
2.2 Course coordin	2.2 Course coordinator			S.l. Prof. Dr. Diosan Laura – <u>lauras@cs.ubbcluj.ro</u>			
2.3 Seminar coordinator			S.l. Prof. Dr. Diosan Laura — <u>lauras@cs.ubbcluj.ro</u>				
2.4. Year of study	1	2.5 Semester	2 2.6. Type of evaluation E 2.7 Type of discipline Options			Optional	
2.8 Code of the discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	39	Of which: 3.5 course	26	3.6	13
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					0
Evaluations				3	
Other activities:				0	
0.5.5		50			

3.7 Total individual study hours	73
3.8 Total hours per semester	112
3.9 Number of ECTS credits	

4. Prerequisites (if necessary)

4.1. curriculum	 Computer programming, calculus, linear algebra, data
	structures and algorithms, artificial intelligence

4.2. competencies • mathematics, programming, analytical skills

5. Conditions (if necessary)

5.1. for the course	• N/A
5.2. for the seminar /lab	The presence is mandatory
activities	

6. Specific competencies acquired

o. Specii	ic competencies acquired
	C1: Operating with basic concepts of mathematics, physics, measurement science, mechanical
50 0	engineering, chemical engineering, electrical engineering in systems engineering
Professional competencies	C2: Operating with basic concepts of computer science, information technology and communication
npe	C3: Operating with fundamentals of control engineering, process modelling, simulation, identification and
COL	analysis methods, and computer aided design.
onal	C4: Design, implementation, testing, operation and maintenance of systems with generic and dedicated
essi	equipment, including computer networks for control engineering and applied informatics.
rof	C5: Development and implementation of automatic control structures and algorithms based on project
4	management principles, software environments and technologies based on microcontrollers, signal processors, programmable logic controllers and embedded systems.
	CT1: Applying the organized and efficient work rules, and a responsible attitude towards the didactic-
	scientific field, for the creative valorization of their own potential, by respecting the principles and norms
S	of professional ethics.
Transversal competencies	CT3: Using effective methods and techniques of efficient learning, get informed, research and development of the capabilities to use the knowledge, adapting to the requirements of a dynamic society
Tra	in the communication era.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Build system, software and algorithms development skills in the area of autonomous driving
7.2 Specific objective of the discipline	Understanding the technology and strategies used for autonomous driving
	Understanding of algorithms for perception and sensors data fusion
	Get an overview on connectivity in vehicles

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in automated driving (1 course)	Slides presentation,	
2. Ultrasonic and electromagnetic sensors (2	explanations and	
courses)	demonstrations,	

a) Illituacania	diamoniana assa
a) Ultrasonic	discussions, case
- Physical principles of operation of ul	trasonic studies
sensors	
- Applications where the sensor is best	
used (technologies for driver assistar	ice
systems based on ultrasonic sensors)	
b) LiDAR	
 Principles of operation and examples 	
 Applications where the sensor is best 	to be
used	
c) RADAR	
- Sensor model	
 Applications where the sensor is best 	to be
used	
3. Video sensor (3 courses)	
 a) Image processing basics 	
- Image transformations, image filtering	g, edge
detection	
b) Computer vision basics	
- Image representation & acquisition	
- Camera model	
- Distortion correction	
c) Stereo video processing	
- Epipolar geometry basics	
- Stereo camera model	
- Rectification	
- Disparity estimation	
d) Optical flow	
4 Classification and chicat detection (2)	(2011)
4. Classification and object detection (3	(Courses)
a) Machine Learning review	
- Supervised learning	
- Unsupervised learning	
- Reinforcement learning	
b) Deep Learning	
- Relation to machine learning	4
- Deep feedforward networks (cross er	шору,
regularization, dropout)	
- Back propagation	
- Convolutional neural networks	
- Recurrent neural networks	
- Examples of DNN architectures	
5. Sensor data fusion for perception and	
localization (1 course)	
- State estimators and Kalman filter	
- Extended Kalman filter	
- Fusion of video and RADAR sensors	
- GPS and odometry fusion for localzi	
- Localization techniques & precise ma	apping
6. Connectivity (2 courses)	
- Introduction to connectivity and clou	a
computing	

-	Big data analytics methods for automated driving		
7.	Office hours and exam Q&A session (1		
	course)		
	graphy		
Biblio	graphy		
	Explore articles on autonomous driving (shared or		
	nation: From Driver Assistance Systems to Autom	nated Driving, VDA, 201	5
Auton	notive handbook, Robert Bosch GmbH, 2007		
-	minar / laboratory	Teaching methods	Remarks
1.	Radar sensors application (ex: RARAD-based		
	objects detection)		
2.	Video sensors application 1(ex: 3D		
	reconstruction)		
3.	Video sensors application 2 (ex: occupancy-		
	grid based free-space)		
4.	Machine learning application		
5.	Deep learning application (ex: objects		
	detection)		
6.	Sensor data fusion application (ex: Kalman		
	filters)		
Biblio	graphy		
-	Will be shared at each laboratory		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course and applications is developed together with an automotive company

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Evaluation of the acquired skills, activity within lectures and seminars	Exam	100%
10.5 Seminar/lab activities	Evaluation of the practical skills, activity within laboratory classes	Will be evaluated as part of the final exam (row above)	0%
10.6 Minimum performance	e standards		
Exam grade > 5			

Date	Signature of course coordinator	Signature of seminar coordinator
19.03.2018	Prof. Dr. Dioșan Laura	Prof. Dr. Dioșan Laura
Date of approval	Signature of the head of department	
	Prof. Dr. Andreica Anca	