SYLLABUS

1. Information regarding the programme

1, 111101111111111111111111111111111111	ic programme
1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High Performance Computing and Big Data Analytics
Qualification	

2. Information regarding the discipline

2.1 Name of the disc:	ipline	Scie	entific Data Vizualizatio	n			
2.2 Course coordinat	or	Conf. dr. Mihai SUCIU		Conf. dr. Mihai SUCIU			
2.3 Seminar coordina	ntor	Cont	Conf. dr. Mihai SUCIU				
2.4. Year of study 1	2.5 Semester	2	2.6. Type of evaluation	Е	2.7 Type of discipline Optional		
2.8 Code of the	MME8059						
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	1	3.3 seminar/laboratory	1sem
					+1pr.
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					
Evaluations					
Other activities:					
255 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•	Ability to work with an integrated development environment.
4.2. competencies	•	Average programming skills. Basic math literacy is assumed.

5. Conditions (if necessary)

5.1. for the course	course room with video projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Ability to apply knowledge of computing and mathematics appropriate to the discipline; Ability to analyse a problem, and identify and define the computing requirements competencies **Professional** appropriate to its solution; Ability to identify and to specify computing requirements of an application and to design, implement, evaluate, and justify computational solutions; Ability to use current techniques and skills to integrate available theory and tools necessary for applied computing practices. Ability to apply mathematical foundations, algorithmic principles, and computer science competencies theory; **Transversal** Ability to apply design and development principles in the construction of software systems; Ability to acquire knowledge properly in an application domain in the modelling and design; Ability to work effectively in a team.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to apply theories, principles and concepts with technologies to design, develop, and verify computational solutions; Be able to use data visualization (technique tool used to help researchers understand and/or interpret data)
7.2 Specific objective of the discipline	 To assimilate data visualization techniques and the visualization as a method of studying the real phenomenon. To gain skills related to problem solving through visualization of data. To teach the students the concepts used in the field of modelling and visualization of simulation and to acquire the methods for validation of simulation using Scientific Data Visualization. Know the main visualization techniques for scalar, vector, and tensor datasets and understand their strengths and limitations. Be able to implement sophisticated interactive visualizations using open source software. Be able to devise a complete visualization solution to study a practical dataset. After promotion the students should be able to use data visualization as a method of solving real problems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Scientific data, Introduction	Expositions:	
2. Data visualization, Overview of Python	description,	
visualization libraries	explanation, class	
3. Visualization techniques, Plotting basics	lectures,	
4. Data visualization, Declarative vs. Procedural	Use of problems: use	
visualization	of problem questions,	
5. Data modelling, Perception	problems and	
6. Colors, Vector, and Bitmaps	problem situations.	
7. Grids and interpolation, Data Types and 1-D		
data		
8. Scalar field visualization		

9. Vector field visualization	
10. Vector field visualization (II)	
11. Tensor field visualization	
12. Topological methods	
13. Advanced flow visualization, Text and	
Networks	
14. High-dimensional data	

Bibliography

- Andy Kirk. 2016. Data Visualisation: A Handbook for Data Driven Design. Sage Publications Ltd.
- Matthew O. Ward, Georges Grinstein, and Daniel Keim. 2015. Interactive Data Visualization: Foundations, Techniques, and Applications, Second Edition - 360 Degree Business (2nd. ed.). A. K. Peters, Ltd., USA.
- Telea, A. C. 2015. Data visualization: Principles and practice. Boca Raton: CRC Press.
- Georges-Pierre Bonneau, Thomas Ertl, and Gregory M. Nielson. 2005. Scientific Visualization: The Visual Extraction of Knowledge from Data (Mathematics and Visualization). Springer-Verlag, Berlin, Heidelberg.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The first two seminars are dedicated to	Expositions:	
surveying information sources available on	description,	
Internet and Intranet, and planning of the	explanation,	
assignments.	introductive	
	lectures.	
	Conversations:	
	debate, dialog,	
	introductive	
	conversations.	
	Other methods:	
	individual	
	study, exercise,	
	homework	
	study	
2. The next seven seminars (from three to nine)	Conversations:	
are dedicated to paper presentations.	debate, dialog.	
	Discovery: discovery	
	by	
	documenting.	
	Other methods: case	
3. The project demos will be scheduled in the	study;	
last three seminars.	cooperation,	
	individual study,	
	homework study,	
	company	
	examples discussion	
	of material	
Dibliography	material.	
Bibliography		

- 1. Beatriz Sousa Santos, Introduction to Data and Information Visualization, Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, 2010 http://www.ieeta.pt/~bss/MAPI/Introduction-to-Vis-5-10.pdf
- 2. Brodlie, K., L. Carpenter, R. Earnshaw, J. Gallop, R. Hubbold, A. Mumford, C. Osland, P. Quarendon, Scientific Visualization, Techniques and Applications, Springer Verlag, 1992
 - 3. Card, S., J. Mackinlay, B. Schneiderman (ed.), Readings in Information Visualization- Using Vision to Think, Morgan Kaufmann, 1999

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course exists in the curriculum of many universities in the world;
- The results of course are considered by companies of software particularly useful and topical.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	- know the basic elements and concepts of the Scientific Data Visualization;	written exam	50%
10.5 Seminar/Project	- complexity, importance and degree of timeliness of the synthesis made	Paper presentation	10%
	apply the course conceptsproblem solving	Project presentation	40%
10.6 Minimum performa	nce standards	•	•
At least grade 5 at	written exam, paper presentation	s and project realised.	

Date April 12, 2021	Signature of course coordinator Conf. Dr. Mihai SUCIU	Signature of seminar coordinator Conf. Dr. Mihai SUCIU
Date of approval	E	of the head of department . Dr. Laura DIOSAN