SYLLABUS # 1. Information regarding the programme | 1.1 Higher education | Babeş-Bolyai University | |-----------------------|--| | institution | | | 1.2 Faculty | Faculty of Mathematics and Computer Science | | 1.3 Department | Department of Computer Science | | 1.4 Field of study | Computer Science | | 1.5 Study cycle | Master | | 1.6 Study programme / | Computer Science/ Applied Computational Intelligence | | Qualification | | # 2. Information regarding the discipline | 2.1 Name of the | e di | scipline | Knowledge Based Systems and Language Technology | | | | | |-----------------|------|----------|---|-------------------------------|------|-------------|----------| | 2.2 Course coor | rdin | ator | Lecturer Ph.D. Lupea Mihaiela | | | | | | 2.3 Seminar co | ordi | nator | | Lecturer Ph.D. Lupea Mihaiela | | | | | 2.4. Year of | 1 | 2.5 | 2 | 2.6. Type of | exam | 2.7 Type of | optional | | study | | Semester | | evaluation | | discipline | | ## **3. Total estimated time** (hours/semester of didactic activities) | 3.1 Hours per week | 4 | Of which: 3.2 course | 2 | 3.3 seminar/laboratory | 1 sem | |---|----|----------------------|----|------------------------|-------| | | | | | | +1pr | | 3.4 Total hours in the curriculum | 56 | Of which: 3.5 course | 28 | 3.6 seminar/laboratory | 28 | | Time allotment: | | | • | | hours | | Learning using manual, course support, bibliography, course notes | | | | | 25 | | Additional documentation (in libraries, on electronic platforms, field documentation) | | | | | | | Preparation for seminars/labs, homework, papers, portfolios and essays | | | | | 25 | | Tutorship | | | | | | | Evaluations | | | | | 15 | | Other activities: individual project | | | | | 29 | | 277 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | 3.7 Total individual study hours | 119 | |----------------------------------|-----| | 3.8 Total hours per semester | 175 | | 3.9 Number of ECTS credits | 7 | ## **4. Prerequisites** (if necessary) | 4.1. curriculum | Formal languages, Data structures, Machine learning | |-------------------|---| | 4.2. competencies | Programming skills in a high level programming language | ## **5. Conditions** (if necessary) | 5.1. for the course | | |---------------------------|--| | 5.2. for the seminar /lab | Laboratory with computers; high level programming language | | activities | environment (.NET or any Java environment a.s.o.) | #### 6. Specific competencies acquired ## Professional competencies Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Advanced ability to approach, model and solve phenomena and problems from natural language and economy using fundamental knowledge from mathematics and computer science; Ability to approach and solve complex problems using various techniques of computational intelligence; Proficient use of methodologies and tools specific to programming languages and software systems. Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles competencies **Transversal** Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills #### **7. Objectives of the discipline** (outcome of the acquired competencies) | 7.1 General objective of the discipline | To introduce the basic principles, technologies and applications of Language Technology (LT) and Knowledge based systems. To understand the current state of the art in LT in order to realize original research in LT. | |--|---| | 7.2 Specific objective of the discipline | Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms (clustering, machine learning) and techniques (unsupervised, supervised) to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, information extraction, anaphora resolution) in Natural Language Processing domain. | #### 8. Content | 8.1 Course | Teaching methods | Remarks | |---|--|---------| | Course 1. Natural Language Processing (NLP): stages, domains, applications. | Exposure: description, explanation, examples, debate, dialogue | | | Course 2. - WordNet: knowledge structure, semantic relations, lexical relations, applications, interfaces; corpora. - Part–of–speech tagging. | Exposure: description, explanation, examples, debate, dialogue | | | Course 3. Syntactic parsing - grammar rules for English - sentence level construction; - Cocke-Kasami-Yonger (CKY) algorithm; | Exposure: description, explanation, examples, debate, dialogue | | | Course 4. Statistical parsing | Exposure: description, | |--|---| | - Probabilistic Context-Free Grammars (PCFG); | explanation, examples, | | - Probabilistic CKY algorithm | debate, dialogue | | | | | Course 5. Hidden Markov Model (1) | Exposure: description, explanation, examples, | | - Markov chains, Hidden Markov Model(HMM); | debate, dialogue | | - three canonical problems associated with HMM | debute, dialogue | | - the forward algorithm; the Viterbi algorithm | | | Course 6. Hidden Markov Model (2) | Exposure: description, | | - the Baum-Welch algorithm for HMM; | explanation, examples, | | - applications to part-of-speech tagging. | debate, dialogue | | Course 7. Word Sense Disambiguation (1) | Exposure: description, | | - unsupervised (by clustering); | explanation, examples, | | - dictionary based approach (Lesk, Yarowsky). | debate, dialogue | | Course 8. Word Sense Disambiguation (2) | Exposure: description, | | - machine learning approach; | explanation, examples, | | - the bootstraping algorithm | debate, dialogue | | Course 9. Document summarization | Exposure: description, | | - approaches based on clustering, graphs and Formal | explanation, examples, | | Concept Analysis | debate, dialogue | | Course 10. Anaphora and co-reference resolution | Exposure: description, | | - hard constraints and preferences | explanation, examples, | | - Hobb's algorithm, Lapin and Lease algorithm | debate, dialogue | | - Mitkov's algorithm | | | Course 11. Opinion mining/Sentiment analysis | Exposure: description, | | | explanation, examples, | | | debate, dialogue | | Course 12. Textual entailment | Exposure: description, | | | explanation, examples, | | Course 13. Information extraction | debate, dialogue | | Course 15. Information extraction | Exposure: description, explanation, examples, | | | debate, dialogue | | Course 14. Students' presentations of the practical project. | Debate, dialog | | processing of the processing projects | 1 | #### **Bibliography** - 1. J.ALLEN: Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995. - 2. E. CHARNIAK: Statistical language learning, MIT press, 1996. - 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University,1994. - 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994. - 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006. - 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000. - 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999. - 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003. - 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001. - 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01. | 8.2 | Seminar / laboratory | Teaching methods | Remarks | |-----|--|------------------------|---------------------------| | 1. | Working with WordNet, Romanian WordNet | Explanation, | The seminar/lab is | | | and WordnetSimilarity tool. | dialogue, case studies | structured as 2 hours | | | | | classes every second week | | 2. | Working with dedicated parsers and taggers | Explanation, | | | | (Stanford, CST tools, Racai tools) | dialogue, case studies | | | 3. | Students' presentations of the theoretical papers | Dialogue, debate | | | 4. | Students' presentations of the theoretical papers | Dialogue, debate | | | 5. | Working with dedicated tools for information | Explanation, | | | | summarization, anaphora and co-reference | dialogue, case studies | | | | resolution | | | | 6. | Working with dedicated tools for information | Explanation, | | | | extraction, sentiment analysis. | dialogue, case studies | | | 7. | Students' presentations of the practical projects. | Dialogue, debate | | ### **Bibliography** - 1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html - 2. Resurse lingvistice in limba romana: www.racai.ro # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies; - The course exists in the studying program of all major universities in Romania and abroad; - The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing. #### 10. Evaluation | 10. Evaluation | | | | | | |---|--|---|---------------|--|--| | Type of activity | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Share in | | | | | | | the grade (%) | | | | 10.4 Course | know the theoretical concepts of the domain;apply the course methods, algorithms in problem solving | Written exam | 30% | | | | 10.5 Seminar/lab activities | - know to synthesize and compare different approaches/results of the same studied subject. | Theoretical paper based on recent research papers in NLP domain; | 30% | | | | | - be able to implement course algorithms | Practical project - implementation of a NLP tool based on the studied methods | 30% | | | | | Class attendance | | 10% | | | | 10.6 Minimum performance standards | | | | | | | ➤ The final grade to be at least 5 (from a scale of 1 to 10). | | | | | | | Date | Signature of course coordinator | r Signature of seminar coordinator | |------------------|---------------------------------|-------------------------------------| | 25.04.2021 | Lect. Ph.D. Lupea Mihaiela | Lect. Ph.D. Lupea Mihaiela | | | | | | Date of approval | , | Signature of the head of department | | Date of approvar | ' | Signature of the head of department | | | | Prof. Ph.D. Dioşan Laura |