SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics and Computer Science of the Hungarian
	Line
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Analysis and Modelling
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline	discipline Information retrieval /				
	Információ-visszakeresés /				
	Regăsirea informației				
2.2 Course coordinator	2.2 Course coordinator Assoc. prof. dr. Bodó Zalán-Péter				
2.3 Seminar coordinator Assoc. prof. dr. Bodó Zalán-I			Péter		
2.4. Year of study 2.5 Semeste	er 3	2.6. Type of evaluation	Е	2.7 Type of	Compulsory
				discipline	
2.8. Code of the MME8032				-	
discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3 seminar/laboratory	1+2
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6 seminar/laboratory	42
Time allotment:	-		-		hours
Learning using manual, course sup	port, biblio	graphy, course notes			40
Additional documentation (in libra	ries, on ele	ctronic platforms, field	docum	entation)	30
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					14
Evaluations					6
Other activities:					-
3.7 Total individual study hours 130					
3.8 Total hours per semester 200					
3.9 Number of ECTS credits 8					

4. Prerequisites (if necessary)

4.1. curriculum	None
4.2. competencies	Algorithms, programming skills, basic math (algebra, probability theory,
	statistics)

5. Conditions (if necessary)

5.1. for the course	Video projector and blackboard/whiteboard
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment(s) (e.gNET, Java, Python); Matlab

6. Specific competencies acquired

Profess	Understanding the concepts, methods and models used in Information Retrieval (IR).
ional	Understanding the principles, design and implementation of data storage techniques,
compet	conversion between formats.
encies	• Study and analysis of algorithms, that retrieve/extract information from textual databases.
Transv	Responsible execution of lab assignments, research and practical reports.
ersal	Application of efficient and rigorous working rules.
compet	Manifest responsible attitudes toward the scientific and didactic fields.
encies	Respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7. Objectives of the discipline (outcome of the acquired competencies)			
7.1 General objective of the discipline	To present the field of IR, studying and analyzing the algorithms used in IR.		
1	doed in it.		
7.2 Specific objective of the	The basics of IR:		
discipline	 Basic concepts: document and term lists, document-term, term- 		
	document matrices, posting lists, indices		
	 Building indices 		
	○ Binary IR		
	 Probabilistic models in IR 		
	 The Vector Space Model (VSM) 		
	 Supervised and unsupervised learning in IR 		
	 Web search, link analysis 		
	Design and application of search engines		

8. Content

8.1 Course	Teaching methods	Remarks
1. Introductory concepts, definitions, introduction to	interactive exposure,	
information retrieval systems.	explanation,	
	conversation, didactical	
	demonstration	
2. Indexing techniques.	interactive exposure,	
	explanation,	
	conversation, didactical	
	demonstration	
3-4. The Vector Space Model (VSM).	interactive exposure,	
	explanation,	
	conversation, didactical	
	demonstration	
5. Evaluation of IR systems.	interactive exposure,	
	explanation,	
	conversation, didactical	
	demonstration	
6. Probabilistic models in IR.	interactive exposure,	
	explanation,	
	conversation, didactical	
	demonstration	
7. Language models in IR.	interactive exposure,	

	explanation, conversation, didactical demonstration
8-9. Classification methods in IR: Naive Bayes, Rocchio's algorithm, regularized least squares (RLS), support vector machines (SVM), etc.	interactive exposure, explanation, conversation, didactical demonstration
10-11. Unsupervised methods in IR, clustering algorithms.	interactive exposure, explanation, conversation, didactical demonstration
12-13. Methods of dimensionality reduction, matrix factorization techniques.	interactive exposure, explanation, conversation, didactical demonstration
14. Web search, link analysis.	interactive exposure, explanation, conversation, didactical demonstration

Bibliography

- [1] Manning C.D., Raghavan P., Schütze H. *Introduction to Information Retrieval*. Cambridge University Press, 2009.
- [2] BAEZA-YATES R., RIBEIRO-NETO B. *Modern Information Retrieval*. Addison-Wesley, 1999.
- [3] VAN RIJSBERGEN C. J. *Information Retrieval* (2nd ed.). Butterworths, 1979.
- [4] DOMINICH S. The Modern Algebra of Information Retrieval. Springer, 2008.
- [5] BODON F. *Adatbányászati algoritmusok*. GNU Free Documentation License, 2010 (http://www.cs.bme.hu/~bodon/magyar/adatbanyaszat/tanulmany/adatbanyaszat.pdf).

8.2 Seminar / Laboratory	Teaching methods	Remarks
1. Introduction to Perl and/or Python programming.	documentation,	
	explanation,	
	conversation	
2. Famous classification algorithms in IR: Naive Bayes,	documentation,	
Rocchio, SVM, etc.	explanation,	
	conversation	
3-4. The Apache Solr indexing/search engine.	documentation,	
	explanation,	
	conversation	
5-6. The Apache Hadoop software library.	documentation,	
	explanation,	
	conversation	
7. Summary, project presentations.		Student presentations on selected related topics.

Bibliography

- [1]–[5] +
- [6] MANNING C. D., SCHÜTZE H. *Foundations of statistical language processing*. MIT Press, Cambridge, 1999.
- [7] SEBASTIANI F. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 2002, vol. 34, pp. 1–47.
- [8] http://nlp.stanford.edu/IR-book/
- [9] http://www.stanford.edu/class/cs276/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the course "Information Retrieval and Web Search" at Stanford University (http://web.stanford.edu/class/cs276/), and is based on the book "Introduction to Information Retrieval" by Manning, Raghavan and Schütze (http://nlp.stanford.edu/IR-book/, see also the bibliography above).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade	
10.4 Course	Written exam at the end of	Written exam	60%	
	the semester			
10.5 Seminars/laboratory	Presentation of the software	Evaluation of the project	40%	
	projects			
10.6 Minimum performance standards				
At every evaluation, minimum half of the points needs to be collected.				

Date Signature of course coordinator Signature of seminar coordinator

10.04.2021 Dr. Bodó Zalán-Péter Dr. Bodó Zalán-Péter

Date of approval Signature of the head of department

14.04.2021 Dr. András Szilárd