SYLLABUS

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Analiza datelor și modelare – limba engleză
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Multiagent systems								
2.2 Course coordinator Prof. PhD Czibula Gabriela								
2.3 Seminar coordinator				Prof. PhD Czibula G	abrie	la		
2.4. Year of	1	2.5	2	2.6. Type ofE2.7 Type ofOptional				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					34
Additional documentation (in libraries, on electronic platforms, field documentation)					45
Preparation for seminars/labs, homework, papers, portfolios and essays					46
Tutorship					16
Evaluations					17
Other activities:					-
3.7 Total individual study hours		158			•

3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environement a.s.o.)

6. Specific competencies acquired Demonstrate advanced modeling skills for economic, industrial, scientific phenomena and competencies processes, by using fundamental mathematical, statistical, and computer science knowledge Professional Demonstrate advanced skills to analysis, design, and construction of software systems, using a wide range of hardware / software platforms, programming languages and environments, and modeling, verification and validation tools Ethic and fair behavior, commitment to professional deontology • **Transversal competencies** Team work capabilities; able to fulfill different roles • Professional communication skills; concise and precise description, both oral and written, • of professional results, negotiation abilities. Entrepreneurial skills; working with economical knowledge; continuous learning Good English communication skills •

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To present the field of agents as a new research and application domain of Software Engineering and Artificial Intelligence.
7.2 Specific objective of the discipline	 To introduce the main concepts and methods related to agent oriented software engineering. To present the connection between agents and other programming paradigms. To present the connection between multiagent systems and the distributed artificial intelligence field. To induce the necessity of MAS through the study of relevant industrial and practical applications.

8. Content

8.1 Course	Teaching methods	Remarks
 1. Introduction Agent based software engineering The concept of agent and intelligent agent Applications 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 2. Agents and intelligent agents (1) Definitions, properties, taxonomies Abstract and concrete architectures for intelligent agents Software agents Mobile agents, interface agents 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 3. Agents and intelligent agents (2) Application domains Agents and Objects Agents and Expert Systems Agent based development 	 Interactive exposure Explanation Conversation Didactical demonstration 	

4. Agent based systems (1)	• Interactive exposure
• Design principles of an agent based system	• Explanation
 Conceptual modeling using agents 	Conversation
• Examples	• Didactical
	demonstration
5. Agent based systems (2)	Interactive exposure
• Agents in complex software systems	• Explanation
• Implementation of the agent function	Conversation
• Examples	• Didactical
-	demonstration
6. Multiagent systems and societies of agents	Interactive exposure
• Coordination, cooperation, communication	• Explanation
- protocols	Conversation
Negotiation	Didactical
Communication languages between agents	demonstration
• KQML, FIPA-ACL	
7. Applications of agents and MAS (1)	Interactive exposure
Agents in e-business and e-commerce	Explanation
• Agents in e-banking	Conversation
Agents for Distributed Data Mining	Didactical
	demonstration
8. Applications of agents and MAS (2)	Interactive exposure
Information agents	Explanation
Industrial applications of MAS	Conversation
	Didactical
	demonstration
9. Distributed problem solving	Interactive exposure
Agent based modeling	Explanation
• Advantages of using agents	Conversation
	Didactical
	demonstration
10. Distributed constraint satisfaction problems	Interactive exposure
• The problem definition	Explanation
• The hyperresolution based consistency	Conversation
algorithm	Didactical
Asynchronous backtracking	demonstration
• Examples	
11. Distributed path finding problems	Interactive exposure
Asynchronous dynamic programming	Explanation
Learning Real Time A*	Conversation
Bidirectional search algorithm	Didactical
 Real time multiagent search algorithm 	demonstration
Examples	
12. Learning in multiagent systems	Interactive exposure
Types of learning	Explanation
 Cooperative learning in multiagent systems 	Conversation
 Team learning 	Didactical
Concurrent learning	demonstration
Application domains for multiagent	
learning	
13. MAS research reports presentation	Interactive exposure
	Conversation

14. MAS research reports presentation	• Interactive exposure
	Conversation

Bibliography

- 1. M. Wooldridge, G. Weiss, and P.Ciancarini, editors: Agent-Oriented Software Engineering II Springer-Verlag Lecture Notes in Computer Science Volume 2222, February 2001.
- F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems: The Gaia Methodology. In ACM Transactions on Software Engineering Methodology, 12(3):317-370, July 2003.
- 3. Czibula, G., Sisteme multiagent în Inteligența Artificială Distribuită. Arhitecturi și aplicații. Editura RisoPrint, Cluj-Napoca, 2006
- 4. Weiss, G. (Ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, 1999

8.2 Seminar / laboratory	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every second
		week
1. Administration of seminars. Survey of the sources	• Interactive exposure	
of information available on Internet and Intranet	• Explanation	
	Conversation	
2. Survey of the sources of information available on	• Documentation	
Internet and Intranet; chosing the paper topic and	Explanation	
scheduling the presentation.	Conversation	
An agent based system (Project 1) will be developed		
using an open source agent development environment.		
The second project (Project 2) will be realized from		
scratch and documented. The software will have to		
demonstrate the use of multiple agents for some		
specific task.		
3. Problem definition and specification for Project 2	Lab assignment	
	Explanation	
	Conversation	
4. Comments about the solution (problem analysis)	• Lab assignment	
and conceptual modeling of the problem using agents	Explanation	
(Project 2). Demonstration of Project 1	Conversation	
5. Design documentation for Project 2	Lab assignment	
	Explanation	
	Conversation	
6. Design documentation for Project 2	Lab assignment	
	Explanation	
	Conversation	
7. The electronic version of the source code, test files	Lab assignment	
and any other files required to test Project 2. Project	Explanation	
2 demonstration	Conversation	

Bibliography

- 1. M. Wooldridge, G. Weiss, and P.Ciancarini, editors: Agent-Oriented Software Engineering II Springer-Verlag Lecture Notes in Computer Science Volume 2222, February 2001.
- F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems: The Gaia Methodology. In ACM Transactions on Software Engineering Methodology, 12(3):317-370, July 2003.
- 3. Czibula, G., Sisteme multiagent în Inteligența Artificială Distribuită. Arhitecturi și aplicații. Editura RisoPrint, Cluj-Napoca, 2006

4. Weiss, G. (Ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, 1999

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the distributed artificial intelligence field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• A theoretical research report on an agent based topic, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%
	Class attendance	4 unmotivated absences are accepted, but each unmotivated absence other than those specified above are penalised	30%
10.5 Seminar/lab activities	• A software project developed using an open source agent development environment	Evaluation of the project (documentation and demonstration)	10%
10.6 Minimum performance	• An agent based system fully implemented, without using existing development environments.	Evaluation of the project (software implementation, documentation and demonstration)	20%

10.6 Minimum performance standards

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Distributed Artificial Intelligence domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

• Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator
13.04.2021	Prof. dr. Gabriela Czibula	Prof. dr. Gabriela Czibula
Date of approval	Signature of the head of department	
	Prof. dr. Dioșan Laura	