

SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeș-Bolyai University

1.2 Faculty Mathematics and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Master

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Securitatea sistemelor software / Software Systems

Security / Sicherheit der Informationssysteme

2.2 Course coordinator Conf. dr. Mihai SUCIU

2.3 Seminar coordinator Conf. dr. Mihai SUCIU

2.4. Year of study 2 2.5 Semester 3 2.6. Type of evaluation E 2.7 Type of

discipline

Mandatory

2.8 Code of the discipline MMG8157

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 4 Of which: 3.2 course 2 3.3 seminar/laboratory 0+1+

1

3.4 Total hours in the curriculum 56 Of which: 3.5 course 28 3.6 seminar/laboratory 14

Time allotment: hours

Learning using manual, course support, bibliography, course notes 15

Additional documentation (in libraries, on electronic platforms, field documentation) 10

Preparation for seminars/labs, homework, papers, portfolios and essays 17

Tutorship 5

Evaluations 2

Other activities: 0

3.7 Total individual study hours 44

3.8 Total hours per semester 105

3.9 Number of ECTS credits 8

4. Prerequisites (if necessary)

4.1. curriculum • Computer System Architecture

• Operating Systems

• Data Structures and Algorithms

• Data Bases

• Web Programming

4.2. competencies • Programming in C, basic knowledge of Intel x86 architecture,

basic knowledge of web programming and SQL

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es

• C6.1 Identificarea conceptelor si modelelor de baza pentru sisteme de calcul si rețele de

calculatoare.

• C6.2 Identificarea si explicarea arhitecturilor de bază pentru organizarea și gestiunea

sistemelor si a rețelelor.

C6.4 Efectuarea de măsurători de performanță pentru timpi de răspuns, consum de

resurse; stabilirea drepturilor de acces

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

• CT1 Aplicarea regulilor de muncă organizată şi eficientă, a unor atitudini responsabile

faţă de domeniul didactic-ştiinţific, pentru valorificarea creativă a propriului potențial, cu

respectarea principiilor şi a normelor de etică profesională

• CT3 Utilizarea unor metode şi tehnici eficiente de învăţare, informare, cercetare şi

dezvoltare a capacităţilor de valorificare a cunoştinţelor, de adaptare la cerinţele unei

societăţi dinamice și de comunicare în limba română și într-o limbă de circulație

internațională

7. Objectives of the discipline (outcome of the acquired competencies)

5.1. for the course • course room with video projector

5.2. for the seminar /lab

activities

7.1 General objective of the

discipline

Ability to evaluate the security features of a software application based on

the source code. Acquiring the minimum basic skills of writing a source

code without vulnerability.

7.2 Specific objective of the

discipline

• Knowledge of the basic mechanisms that define the security of the system

and the software environment in which an application runs (i.e. the security

model), such as: access permissions, security policies, interaction with the

external environment, etc.

• Knowledge of the main types of software vulnerabilities, such as: use of

incorrectly validated user data, uncontrolled direct or indirect interaction

with the external environment of the application, etc.

• Learning effective techniques for studying and evaluating source code

from a security perspective and the ability to identify possible

vulnerabilities.

• Ability to assess the implications of a discovered vulnerability.

8. Content

8.1 Course Teaching methods Remarks

1 Concepts and basics related to software

vulnerabilities and methods and tools for

developing software without vulnerabilities and

evaluating software from the perspective of

possible vulnerabilities

Exposure:

description,

explanation,

examples, debate

2 Memory corruption vulnerabilities (buffer /

integer overflow, etc.)

3 Vulnerabilities specific to the C language:

arithmetic limits (representation), type

conversions, pointers, etc.

4 Vulnerabilities in the structural components of a

software application (Program building blocks)

5 Vulnerabilities in the use and manipulation of

strings and metacharacters

6 Vulnerabilities specific to UNIX operating

systems

7 Vulnerabilities specific to Windows operating

systems

8 Synchronization vulnerabilities

9 Web vulnerabilities: SQL code injection, XSS,

XSRF etc.

10 Proactive approaches to security

11 Proactive approaches to security

12 Proactive approaches to security

13 Proactive approaches to security

14 Proactive approaches to security

Bibliography

1. M. Down, J. McDonald, J. Schuh, „ The Art of Software Security Assessment. Identifying and

Preventing

Software Vulnerabilities ”, AddisonWesley, 2007

2. M. Howard, D. LeBlanc, J. Viega, „ 24 Deadly Sins of Software Security. Programming Flows and

How to Fix Them ”, McGraw Hill, 2010

3. M. Howard, D. LeBlanc, „ Writing Secure Code for Windows Vista ”, Microsoft Press, 2007

4. G. McGraw, „ Software Security:Building Security In ”, AddisonWesley, 2006

5. R. Seacord, „CERT C Coding Standard: 98 Rules for Developing Safe, Reliable, and Secure Systems”,

AddisonWesley, 2 nd edition, 2014

6. , „ Common Weaknesses Enumeration (WCE)”, online: http://cwe.mitre.org/data/index.html

8.2 Seminar / laboratory Teaching methods Remarks

1. Tools useful in identifying and assessing

vulnerabilities in a source code: source code

browsers, debuggers, executable code browsers

(binary), fuzzy testing

Dialogue, debate,

examples, guided

discovery

2. Techniques for avoiding, detecting and

assessing vulnerabilities in memory corruption

and specific to C language

• Knowledge of techniques and function libraries useful in writing a source

code without vulnerabilities and the ability to use them in real situations.

3. Techniques for avoiding, detecting and

assessing vulnerabilities in the use and

management of strings and meta-characters

4. Techniques for avoiding, detecting and

assessing vulnerabilities specific to the Linux

operating system

5. Techniques for avoiding, detecting and

assessing vulnerabilities in Windows operating

systems

6. Penetration testing

7. Penetration testing

Bibliography

1. M. Down, J. McDonald, J. Schuh, „ The Art of Software Security Assessment. Identifying and

Preventing

Software Vulnerabilities ”, AddisonWesley, 2007

2. M. Howard, D. LeBlanc, J. Viega, „ 24 Deadly Sins of Software Security. Programming Flows and

How to Fix Them ”, McGraw Hill, 2010

3. M. Howard, D. LeBlanc, „ Writing Secure Code for Windows Vista ”, Microsoft Press, 2007

4. G. McGraw, „ Software Security:Building Security In ”, AddisonWesley, 2006

5. R. Seacord, „CERT C Coding Standard: 98 Rules for Developing Safe, Reliable, and Secure Systems”,

AddisonWesley, 2 nd edition, 2014

6. , „ Common Weaknesses Enumeration (WCE)”, online: http://cwe.mitre.org/data/index.html

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

It is carried out through regular discussions with representatives of significant employers in the field of

information security.

Courses on security issues in application development and related fields (e.g. penetration tests) are present

in many other masters in the field of computer and information security, at universities in the country and

abroad, such as:

∙ Security of software systems, Master of Information Security, Al. I. Cuza, Iași, Faculty of Computers,

http://profs.info.uaic.ro/~webdata/planuri/master/MISS1FS03.pdf

∙ Security of systems and applications, Master of Information Technology Security, Military Technical

Academy, Bucharest, http://mta.ro/masterat/masterinfosec/curricula2013.html

∙ Secure Software Systems, Master of Science in Information Security, Carnegie Mellon University, USA,

http://www.ini.cmu.edu/degrees/msis/courses.html

∙ Software Security, Master in Information Security, Royal Holloway University of London, Information

Security Group,

https://www.royalholloway.ac.uk/isg/documents/pdf/coursespecs(msc)/modules201314/iy5607softwarese

curityspec1314.pdf

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course Ability to define concepts

specific to security issues

at source code level and to

set out the methods for

correctly evaluating and

developing a source code

from a security

perspective.

∙ Ability to solve

problems specific to the

field.

∙ Attendance, (inter)

activity during class

hours.

Written exam 60%

10.5 Seminar/lab

activities

Ability to solve problems

specific to the field

∙ Presence, (inter) activity

during laboratory / project

hours.

Practical exam 40%

10.6 Minimum performance standards
• Ability to define fundamental software vulnerabilities, such as: buffer overflow, SQL code injection, XSS, etc.
• Ability to identify fundamental software vulnerabilities and correct code (demonstrated in lab exercises and final
evaluation).

Date Signature of course coordinator Signature of seminar coordinator

30.04.2020 Conf. Dr. Mihai SUCIU Conf. Dr. Mihai SUCIU

Date of approval Signature of the head of department

... Prof. Dr. Anca ANDREICA

