SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Departament of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Sisteme informatice avansate			
Qualification				

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Ma	achine Learning			
2.2 Course coor	din	ator		Prof. PhD Czibula G	abrie	la	
2.3 Seminar coo	ordi	nator		Prof. PhD Czibula G	abrie	la	
2.4. Year of	1	2.5	1	2.6. Type of	Ε	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					7
Evaluations					16
Other activities:					
3.7 Total individual study hours		133			•
3.8 Total hours per semester 175					

1	
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment

6. Specific competencies acquired Advanced ability to approach, model and solve phenomena and problems from nature and competencies Professional economy using fundamental knowledge from mathematics and computer science. Ability to approach and solve complex problems using various techniques of • computational intelligence. Ethic and fair behavior, commitment to professional deontology • **Transversal competencies** Team work capabilities; able to fulfill different roles • Professional communication skills; concise and precise description, both oral and written, • of professional results, negotiation abilities. Entrepreneurial skills; working with economical knowledge; continuous learning • Good English communication skills •

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To provide an introduction to the basic principles, techniques, and applications of Machine Learning.
7.2 Specific objective of the discipline	 To cover the principles, design, implementation and validation of learning programs which improve their performance on some set of tasks by experience. To offer a broad understanding of machine learning algorithms and their use in data-driven knowledge discovery and program synthesis. To offer an understanding of the current state of the art in machine learning in order to conduct original research in machine learning.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Machine Learning.	• Interactive exposure	
Issues in Machine Learning	• Explanation	
• Designing a learning system	Conversation	
• Example	Didactical	
	demonstration	
2. Statistical foundations	• Interactive exposure	
• Event space and Probability function	• Explanation	
Elementary Information Theory	Conversation	
• Examples	Didactical	
	demonstration	
3. Decision Tree learning	• Interactive exposure	
Decision tree representation	• Explanation	
• ID3 learning algorithm	Conversation	
• Statistical measures in decision tree	Didactical	
learning: entropy, information gain	demonstration	
• Issues in DT learning		
Applications		
4. Artificial Neural Networks	• Interactive exposure	
Neural Network representations		

Appropriate problems for Neural Network	• Explanation
Learning	Conversation
Perceptrons	• Didactical
• Multilayer Networks and the	demonstration
Backpropagation algorithm	
Advanced topics in Artificial Neural	
Networks	
5. Support Vector machines	Interactive exposure
Main idea	• Explanation
Linear SVMs	Conversation
Non-linear SVMs	Didactical
Applications	demonstration
6. Bayesian learning (1)	Interactive exposure
Specific problems	Explanation
• Bayes theorem	Conversation
Naive Bayes Classifier	Didactical
	demonstration
7. Bayesian learning (2)	Interactive exposure
Bayesian Belief Networks	Explanation
 EM algorithm 	Conversation
Examples	D'1 i 1
• Examples	Didactical demonstration
8. Instance based learning (1)	
_	Interactive exposure Euclaration
• <i>k</i> -Nearest Neighbor learning	• Explanation
Locally weighted regression	Conversation
Applications	• Didactical
	demonstration
9. Instance based learning (2)	• Interactive exposure
Radial basis functions	• Explanation
Case based reasoning	Conversation
	• Didactical
	demonstration
10. Unsupervised Learning (1)	• Interactive exposure
Cluster analysis	• Explanation
Self organizing maps	Conversation
	• Didactical
	demonstration
11. Unsupervised Learning (2)	• Interactive exposure
Hebbian learning	• Explanation
Applications	Conversation
	• Didactical
	demonstration
12. Reinforcement Learning	• Interactive exposure
The reinforcement learning task	• Explanation
Markov Decision Processes	Conversation
Q-learning Tamparal Difference learning	• Didactical
Temporal Difference learning Applications	demonstration
Applications I3. ML research reports presentation	Interactive expensive
13. ML research reports presentation	Interactive exposure Conversation
14 ML magazineh uch anta nuceant - them	Conversation
14. ML research reports presentation	• Interactive exposure
	Conversation
Bibliography	

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- Russell, J.S, Norvig, P., Artificial Intelligence- A Modern Approach, Prentice- Hall, Inc., New Jersey, 1995
- 3. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 4. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008
- 5. Manning, C., Schutze, H., Foundations of Statistical NLP, MIT Press, 2002
- 6. Cristiani, N., Support Vector and Kernel Machines, BIOwulf Technologies, 2001
- 7. Nillson, N., Introduction to Machine Learning, Stanford University, 1996

8.2 Seminar / laboratory	Teaching methods	Remarks
		The lab is structured as
		2 hours classes every
		second week
1. Administration of labs. Survey of the sources of	• Interactive exposure	
information available on Internet and Intranet	Explanation	
	Conversation	
2. Survey of the sources of information available on	Documentation	
Internet and Intranet; chosing the paper topic and	Explanation	
scheduling the presentation.	Conversation	
The first software project (Project 1) will be		
developed using an open source ML software. The		
second project (Project 2) will be fully implemented,		
without using existing ML environments.		
3. Installation of ML software; description of the	Lab assignment	
programming software used, including used features	Explanation	
	Conversation	
4. Problem definition	Lab assignment	
	Explanation	
	Conversation	
5. Project 1 demonstration and comments about the	Lab assignment	
solution; problem definition for Project 2	Explanation	
	Conversation	
6. Comments about the solution and problem analysis	Lab assignment	
for Project 2	Explanation	
	Conversation	
7. Design documentation; the electronic version of the	Lab assignment	
source code, test files and any other files required to	Explanation	
test Project 2. Project 2 demonstration	Conversation	
Bibliography		

Bibliography

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- 2. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 3. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the machine learning field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• A theoretical research report on a learning technique, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%
	• The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	30%
	• Class activity and attendance	4 unmotivated absences are accepted, but each unmotivated absence other than those specified above are penalised	20%
10.5 Seminar/lab activities	• A software project developed using an open source ML software	Evaluation of the project (documentation and demonstration)	10%
	• A software project fully implemented, without using existing ML environments.	Evaluation of the project (software implementation, documentation and demonstration)	20%
10.6 Minimum performance	ce standards		

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Machine Learning domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

• Delays in submitting the projects and reports are penalized.

• Successful passing of the exam is conditioned by the final grade that has to be at least 5; the written exam grade has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator
28.04.2020	Prof. dr. Gabriela Czibula	Prof. dr. Gabriela Czibula

Date of approval

Signature of the head of department

Lect. dr. Sterca Adrian