SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Distributed Systems in the Internet (Sisteme distribuite in
Qualification	internet)

2. Information regarding the discipline

2.1 Name of the discipline Statistical Computational Methods									
2.2 Course coordinatorAssoc. Prof. PhD. Habil. Sanda Micula					ula				
2.3 Seminar coordinator				Assoc. Prof. PhD. Habil. Sanda Micula					
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	Optional		
study		Semester		evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

		/			
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					36
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship				14	
Evaluations				18	
Other activities:			-		
3.7 Total individual study hours 108					

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Probability and Statistics
4.2. competencies	Logical thinking
	Average logical programming skills

5. Conditions (if necessary)

5.1. for the course	• Lecture room with large blackboard and video projector, laptop, beamer
5.2. for the seminar /lab	• For seminar: Laboratory with computers having Matlab installed

6. Specific competencies acquired

problems te their performance
rk, to develop a to make the most of ofessional ethic search and developing or communicating in
C S

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory and Mathematical Statistics applications and models
7.2 Specific objective of the discipline	 Ability to use Monte Carlo methods and simulations for solving real- life problems and perform statistical analysis of data Become familiar and be able to work with various probabilistic and statistical models Ability to use statistical features of various mathematical software

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
 Review of Probability and Statistics. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Common discrete and continuous distributions. PDF and CDF. Examples, applications, properties. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Random samples. Sample functions. Estimators. Confidence intervals. Hypothesis and significance testing. 	Interactive exposureExplanationConversation	
 Computer simulations and Monte Carlo methods. MC methods and random number generators. Discrete methods. Examples. 	 Interactive exposure Explanation Conversation Description 	
 Inverse transform and discrete inverse transform method. Rejection method. Special methods. Examples. 	 Interactive exposure Explanation Conversation Didactical demonstration 	

(Account of an MC study Estimation	T	
6. Accuracy of an MC study. Estimating	• Interactive exposure	
probabilities, means, variances. Size of an MC study. Other applications of MC	• Explanation	
methods.	Conversation	
	Didactical demonstration	
7. Stochastic processes. Definitions,	• Interactive exposure	
classifications. Markov processes and	• Explanation	
Markov chains. Transition probability	Conversation	
matrix. Properties, examples.	Description	
8. Steady-state distribution. Regular Markov	• Interactive exposure	
chains. Periodic Markov chains. Simulation	• Explanation	
of Markov chains.	Conversation	
	Didactical demonstration	
9. Counting processes. Binomial and Poisson	• Interactive exposure	
counting processes. Gamma-Poisson	• Explanation	
formula. Simulation of counting processes.	Conversation	
Examples.	Didactical demonstration	
10. Queuing systems. Basic notions, main	• Interactive exposure	
components, Little's law. Bernoulli single-	Explanation	
server QS. Systems with limited capacity.	Conversation	
11. M/M/1 QS. Evaluation of a system's	• Interactive exposure	
performance. Examples.	Explanation	
	Conversation	
	Didactical demonstration	
12. Multiserver QS's. Bernoulli k-server and	Interactive exposure	
M/M/k QS's. M/M/ ∞ QS's. Simulation of	Explanation	
QS's.	Conversation	
13. Statistical inference. Nonparametric tests,	Interactive exposure	
Chi-square-tests, Wilcoxon tests.	Explanation	
Bootstrapping. Applications, examples,	Conversation	
simulations.	Description	
14. Regression and correlation. Fitting models.	Interactive exposure	
Analysis of variance (ANOVA), prediction.	Explanation	
Examples.	Conversation	
	Didactical demonstration	
Bibliography		
1. Micula, S., Probability and Statistics for Comp	outational Sciences, Cluj University F	Press, 2009.
2. Baron, M., Probability and Statistics for Comp	outer Scientists, CRC Press, Taylor ar	nd Francis,
Boca Raton, FL, 2014.		
3. Milton, J.S., Arnold, J. C., Introduction to Pro	bability and Statistics: Principles and	Applications
for Engineering and the Computing Sciences,		
4. Gentle, J. E., Elements of Computational Stati		
5. Matloff, N., From Algorithms to Z-Scores: Pro		n Computer
Science, Orange Grove Texts Plus, Gainesville		** • • •
6. Gentle, J. E., Hardle, W., Mori, Y., Handboo	k of Computational Statistics, Spring	ger, Heidelberg,
		D 1
8.2 Seminar /Laboratory	0	Remarks
1. Random variables and applications.		The seminar is
	Emplanation	structured as 2
	e en eremenen	hours per
		week, every other week
2. Computer simulations of discrete random		
2. Computer simulations of discrete faildoff	• Interactive exposure	
variables. Discrete methods.	Explanation	

3. Computer simulations of random variables	 Conversation Individual and group work
and Monte Carlo studies. Inverse transform method, rejection method, special methods.	 Interactive exposure Conversation Synthesis Individual and group work
 Markov chains. Applications and simulations. 	 Interactive exposure Explanation Conversation Individual and group work
 Counting processes. Bernoulli and Poisson counting processes. Applications and simulations. 	 Interactive exposure Explanation Conversation Individual and group work
6. Queuing systems. Examples and simulations.	 Interactive exposure Explanation Conversation Individual and group work
 Statistical inference. Applications and simulations. 	 Interactive exposure Explanation Conversation Description Individual and group work

Bibliography

- 1. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.
- 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 5. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002.
- 6. Matloff, N., From Algorithms to Z-Scores: Probabilistic and Statistical Modelling in Computer Science, Orange Grove Texts Plus, Gainesville, FL, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course gives students solid statistical background for computational intelligence.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Computational Statistics, with emphasis on simulations and Monte Carlo studies; be able to apply correctly the course concepts on various applications and problem solving 	Written exam on problems only (a sheet with the main formulas is available)	60%
10.5 Seminar/Lab activities	 be able to apply course concepts and techniques on practical problems be able to implement course concepts and algorithms in Matlab be able to solve numerical statistical problems in Matlab 	 participation in discussing, solving and implementing problems throughout the semester individual presentation of solutions lab exam (numerical statistical applications and simulations) 	40%
10.7 Minimum performan	nce standards		
A grade of 5 or a seminar/lab evalu	· · · · · · · · · · · · · · · · · · ·	on <u>each</u> activity mentioned a	bove (written test,

Date	Signature of course coordinator	Signature of seminar coordinator
28.04.2020	Assoc. Prof. PhD. Habil. Sanda Micula	Assoc. Prof. PhD. Habil. Sanda Micula

Date of approval

Signature of the head of department

.....

.....