SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Distributed Systems in Internet
Qualification	

2. Information regarding the discipline

2.1 Name of the di	2.1 Name of the discipline (en) Computational M			mputational Mode	dels for Embedded Systems		
(ro)			Modele computationale pentru sisteme embedded				
2.2 Course coordin	nator		PhD Associate Professor Andreea Vescan				
2.3 Seminar coordinator			PhD Associate Professor Andreea Vescan				
2.4. Year of study	1	2.5 Semester	1 2.6. Type of E 2.7 Type of Compulsory				Compulsory
				evaluation		discipline	
2.8 Code of the	Code of the MME8026						
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					84
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					3
Evaluations					4
Other activities:					0
3.7 Total individual study hours		110			1

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	Video projector, Internet access
5.2. for the seminar /lab	• Laboratory with computers; model checking tools; LPCXpresso, Keil,
activities	LabView; FSM/PN tools.

6. Specific competencies acquired

o. Specifi	e competences acquired
Professional competencies	 Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Analysis, design, and implementation of software systems Proficient use of methodologies and tools specific to programming languages and software systems Organization of software production processes.
Transversal competencies	 Etic and fair behavior, commitment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negotiation abilities; Entrepreneurial skills; working with economical knowledge; continuous learning Good English communication skills.

7. Objectives of the discipline (outcome of the acquired competencies)

710 111 1 61	
7.1 General objective of the	 know and understand fundamental concepts of embedded
discipline	computation;
	 to develop skills in modeling embedded systems with various
	computational models;
	 to describe and verify safety and liveness properties of the system
	being modeled.
7.2 Specific objective of the	will acquire theoretical aspects regarding specification, designing and
discipline	verification of an embedded system;
	will acquire theoretical aspects regarding various computational
	models for embedded systems;
	will know how to model a system and specify restrictions on
	functionalities

8. Content

8.1 Course	Teaching methods	Remarks
Lectures content and schedule are tentative (will be		
modified according to the needs identified in class).		
1. Introduction. Model: Why? What? How?	Interactive exposure	
Types of systems.	Explanation	
Requirements and Safety Requirements.	Conversation	
Model checking	Didactical demonstration	
2. Synchronous models	Interactive exposure	
	Explanation	
	Conversation	

	Didactical demonstration
3. Embedded board. Electronic circuit.	Interactive exposure
3. Embedded board. Electronic chedit.	Explanation
	Conversation
	Didactical demonstration
4. Asynchronous models.	Interactive exposure
1. Tisylicinolous models.	Explanation
	Conversation
	Didactical demonstration
5. Finite State Machines	Interactive exposure
3. Time State Machines	Explanation
	Conversation
	Didactical demonstration
6. Finite State Machines (cont)	Interactive exposure
o. Time State Machines (cont)	Explanation
	Conversation
	Didactical demonstration
7. Petri Nets	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
8. Timed models	Interactive exposure
o. Timed models	Explanation
	Conversation
	Didactical demonstration
9. Dynamical systems	Interactive exposure
y y	Explanation
	Conversation
	Didactical demonstration
10. Hybrid systems	Interactive exposure
2012-9 200	Explanation
	Conversation
	Didactical demonstration
11. Security in Embedded Systems	Interactive exposure
, , , , , , , , , , , , , , , , , , ,	Explanation
	Conversation
	Didactical demonstration
12. Internet of Things	Interactive exposure
•	Explanation
	Conversation
	Didactical demonstration
13. Research report presentation by students	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
14. Research report presentation by students	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
Bibliography	
Books	

[Kat08] C. Baier, J.-P. Katoen, Principles of Model Checking, ISBN 978-0-262-02649-9, 2008

[Ari08] M. Ben-Ari, Principles of the Spin Model Checker, ISBN 978-1-84628-769-5, 2008

[Noe05] T. Noergaard, Embedded systems architecture: a comprehensive guide to engineers and programmers, Elsevier, 2005

[Hoa04] Hoare, CAR (2004) (1985), Communicating Sequential Processes, Prentice Hall International

[Pon02] M. Pont, Embedded C, Addison-Wesley, 2002

[Boo67] Taylor Booth (1967) Sequential Machines and Automata Theory, John Wiley and Sons, New York. Library of Congress Catalog Card Number: 67-25924.

Articles

[Har87] D. Harel, "Statecharts: A Visual Formalism for Complex Systems", Sci. Comput. Programming 8 (1987), 231-274

[Pet66] Petri, CA (1966) Communication with automata. DTIC Research Report AD0630125 **Tutorials**

During lectures/seminars/laboratories tutorials will be given for each assignment.

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar content and schedule are tentative (will be		
modified according to the needs identified in class).		
Seminar 1 and 2	Presentation, Conversation,	
Model Cheking	Problematizations, Discovery,	
 Specifying safety and liveness requirements. 	Individual study, Exercises	
Seminar 3	Presentation, Conversation,	
Embedded boards.	Problematizations, Discovery,	
	Individual study, Exercises	
Seminar 4	Presentation, Conversation,	
 Finite State Machines Project Activity 	Problematizations, Discovery,	
 Using Finite State Machines or/and PetriNets to 	Individual study, Exercises	
model an embedded system		
Seminar 5	Presentation, Conversation,	
Internet of Things	Problematizations, Discovery,	
<u> </u>	Individual study, Exercises	
Seminar 6	Presentation, Conversation,	
Delivery of projects	Problematizations, Discovery,	
	Individual study, Exercises	

Remark:

- Students will search and use model cheking tools suitable for their Model Checking Project Activity. http://spinroot.com/spin/whatispin.html
- Students will use LPCXpresso/Nucleo/LabVIEW for developing FSM –based embedded project
- Students will search and use FSM/PN tools suitable for their FSM/PN Project Activity.

Bibliography

See from Courses content.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad; http://www.seas.upenn.edu/~cis540/ https://inst.eecs.berkeley.edu/~ee249/fa07/

http://www.ict.kth.se/courses/IL2202/http://users.abo.fi/lmorel/MoCs/

http://bears.ece.ucsb.edu/class/ece253/

• Course content is considered very important by the software companies for improving advance embedded systems modeling and verifying skills.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	The correctness and completeness of the accumulated knowledge of computational models for embedded systems.	Written exam (in the regular session)	50%
	During lectures hours, multiple quizzes are given. The mark Q is given.	Multiple quizzes examination during lectures hours	10%
10.5 Seminar/lab activities	Problem definition and specification in JSpin, Show that it is possible to reach the desired end state	Evaluation of the project (modeling, verification properties)	15%
	Use Finite State Machine to model the embedded system.	Evaluation of the project (modeling, I/O, computational model used)	15%
	Research report on embedded system.	Evaluation of the research report (documentation+presentation)	10%

Remark evaluation: Research Paper on a topic related to Embedded systems as extra credit for evaluation. **Remark**.

- Seminar/Laboratory assignments/Projects laboratory work may not be redone in the retake session.
- Written exams can be taken during the retake session.
- Students from Previous Years to 2020-2021
 - o All the above rules apply to students from previous years.
 - o Seminar/Laboratory assignments and practical laboratory activity must be redone during didactic activity time (in the 14 weeks before normal session).
- The final grade computed with the given formula must be at least 5 in order to pass the exam. Final grade = 50% WrittenExan+10% Quiz+15% ProjectJSpin+15% ProjectFSM+10% Report

10.6 Minimum performance standards

Each student has to prove that:

- > (s)he acquired an acceptable level of knowledge and understanding of the computational models for embedded systems;
- (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.
 - > Successful passing of the exam is conditioned by the final grade that has to be at least 5.

	Date	Signature of course coordinator	Signature of seminar coordinator
	16 April 2020	Assoc. Prof. PhD. Andreea Vescan,	Assoc. Prof. PhD. Andreea Vescan
	Date of approval	Signature of the head of department	
		Prof. PhD. Anca Andreica	