SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Mathematical Statistics							
2.2 Course coordinator Assoc. Prof. PhD. Habil. Sanda Micula							
2.3 Seminar coordinator				Lecturer PhD. Mihai lancu			
2.4. Year of	3	2.5	5	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

<u>```</u> ``		/			
3.1 Hours per week	5	Of which: 3.2 course	2	3.3	2 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					5
Tutorship				3	
Evaluations				5	
Other activities:				-	
3.7 Total individual study hours		30			
2 0 T + 11		100			

3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Probability Theory	
	Mathematical Analysis	
4.2. competencies	Logical thinking	
	Average logical programming skills in Matlab	

5. Conditions (if necessary)

5.1. for the course• Lecture room with large blackboard and video projector	
---	--

5.2. for the seminar /lab	•	For seminar: room with large blackboard
activities	•	For lab: Laboratory with computers having Matlab installed

6. Specific competencies acquired

F	es	C1.1 Identifying basic concepts, describing theory and using specific language
0 n Su	competencies	C3.2 Interpretation of data and explaining the appropriate steps for solving problems by
Sic	ten	algorithms
fes	pet	
E I	lm	
P	co	
		CT3 Using efficient methods and techniques for learning, information, research and developing
=	ies	capabilities for using knowledge, for adapting to a dynamic society
LSS	nc	
vei	te	
Transversal	competencies	
ra]	m	
Ē	CO	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various statistical models and procedures Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Review of Probability Theory. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. Common discrete and continuous distributions. PDF and CDF. Examples, applications, properties.	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. Descriptive Statistics. Data collection. Graphical display of data. Frequency distribution and histograms. Parameters of a statistical distribution. Measures of central tendency. Measures of variation.	 Interactive exposure Explanation Conversation Didactical demonstration 	Video projector presentation
 Correlation and regression. Correlation coefficient. Least squares estimation. Linear regression. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Sample Theory. Samples. Sample functions: sample mean, sample variance, sample moments, sample distribution	Interactive exposureExplanationConversation	

function, sample proportions, sample functions for two populations. Properties.	Didactical demonstration
6. Statistical Inference. Estimation theory,	Interactive exposure
basic notions. Unbiased and minimum	• Explanation
variance estimators. Standard error.	Conversation
Common unbiased estimators. Consistent	Didactical demonstration
estimators. Examples.	
7. Properties of point estimators. Likelihood	Interactive exposure
function. Fisher's information. Absolutely	• Explanation
correct estimators. Cramer-Raó Inequality.	Conversation
Efficiency and efficient estimators.	Didactical demonstration
8. Sufficient statistics, Raó-Blackwell	Interactive exposure
Theorem. Complete statistics, Lehmann-	• Explanation
Scheffé Theorem. Examples.	• Conversation
-	Didactical demonstration
9. Methods of estimation. The method of	Interactive exposure
moments estimator, the method of maximum	Explanation
likelihood estimator. Examples.	Conversation
	Didactical demonstration
10 Confidence intervals Pasia concents	
10. Confidence intervals. Basic concepts, general framework. Confidence intervals for	• Interactive exposure
estimating the population mean and the	• Explanation
population variance. Confidence intervals	Conversation
for proportions. Selecting the sample size.	Didactical demonstration
Examples.	
11. Confidence intervals for comparing two	Interactive exposure
population means and two population	Explanation
variances. Confidence intervals for	Conversation
comparing proportions. Examples.	Didactical demonstration
12. Hypothesis testing. Basic concepts, general	Interactive exposure
framework. Rejection region. Type I errors.	• Explanation
Significance testing and P-values. The Z-test	Conversation
for the mean. Selecting the sample size.	Didactical demonstration
Examples.	
13. The T (Student)-test for the mean. Tests for	Interactive exposure
proportions. The Chi-square-test for the	Explanation
variance. The F-test for the ratio of	Conversation
variances. Tests for the difference of means.	Didactical demonstration
Paired data tests. Examples.	
14. Type II errors and the power of a test. Most	• Interactive exposure
powerful tests and the Neyman-Pearson	Explanation
lemma. Uniformly most powerful tests.	Conversation
Examples. Overview of statistical	Didactical demonstration
procedures.	
Sibliography	
1. Micula, S., Probability and Statistics for Comp	
2. Baron, M., Probability and Statistics for Comp	outer Scientists, CRC Press, Taylor and Francis,

- 2. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.
- 3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 4. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 5. Feller, W., An introduction to probability theory and its applications, Vol. 1, 3rd edition, WSE Wiley, New York, 2008.

6. DeGroot, M. H., Schervish, M. J., Probability	and Statistics, Addison-Wesley, B	oston, 2012.
8.2 Seminar	Teaching methods	Remarks
1. Euler's Functions. Properties. Computation	Interactive exposure	
of moments of continuous random variables.	Explanation	
	Conversation	
2. Rules of probability, random variables.	Interactive exposure	
Applications.	Explanation	
	Conversation	
	Individual/group work	
3. Descriptive Statistics. Measures of central	Interactive exposure	
tendency and measures of variation.	Explanation	
	Conversation	
	Individual/group work	
4. Correlation and regression. Correlation	Interactive exposure	
coefficient, lines of regression.	Explanation	
	Conversation	
	Individual/group work	
5. Sample functions. Properties.	Interactive exposure	
	Explanation	
	Conversation	
	Individual/group work	
6. Unbiased, consistent and minimum variance	Interactive exposure	
estimators.	Explanation	
	Conversation	
	Individual/group work	
7. Fisher's information. Absolutely correct and	Interactive exposure	
efficient estimators.	Conversation	
	Synthesis	
	Individual/group work	
8. Sufficient and complete statistics. Lehmann-	Interactive exposure	
Scheffé Theorem. Minimum variance	Explanation	
unbiased estimators.	Conversation	
	Individual/group work	
9. Method of moments.	• Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
	Individual/group work	
10. Method of maximum likelihood.	• Interactive exposure	
	• Explanation	
	Conversation	
	Individual/group work	
11. Confidence intervals for the mean, the	• Interactive exposure	
variance and proportions. Selecting the	• Explanation	
sample size.	• Conversation	
	Individual/group work	
12. Confidence intervals for comparing the	• Interactive exposure	
parameters of two populations.	• Explanation	
	• Conversation	
	Individual/group work	

 13. Hypothesis and significance testing for the mean, the variance and proportions. Selecting the sample size. 14. Hypothesis and significance testing for comparing the parameters of two populations. Most powerful tests. 	 Interactive exposure Explanation Conversation Individual/group work Interactive exposure Explanation Conversation Individual/group work 	
8.3 Laboratory	Teaching methods	Remarks
 Review of Matlab features. Statistics and machine learning toolbox. 	 Interactive exposure Explanation Conversation Individual/group work 	The lab is structured as 2 hours per week, every other week
 Random number generators. Simulations of random variables. Samples, statistical measures. 	 Interactive exposure Explanation Conversation Individual/group work 	
 Descriptive Statistics. Histograms, frequency polygons, boxplots. 	 Interactive exposure Explanation Conversation Individual/group work 	
4. Correlation and regression. Best fit of data.	 Interactive exposure Synthesis Conversation Individual/group work 	
5. Confidence intervals for means, variances and proportions.	 Interactive exposure Explanation Conversation Individual/group work 	
6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population.	 Interactive exposure Explanation Conversation Individual/group work 	
 Hypothesis and significance testing for comparing two populations and for paired data. 	 Interactive exposure Explanation Conversation Individual/group work 	

Bibliography

1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.

2. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.

- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 acquire the basic principles in Mathematical Statistics; be able to apply correctly the course concepts on various applications 	Written exam on problems only (a sheet with the main statistical formulas is available)	60%	
10.5 Seminar/Lab activities	 apply course concepts and techniques on practical problems choose and apply the appropriate statistical procedure to various practical problems implement course concepts and algorithms in Matlab to solve numerical statistical problems in Matlab 	 participation in discussing and solving problems in seminar and lab throughout the semester solving numerical statistical applications additional documentation individual presentation of solutions 	40%	
10.7 Minimum performance standards				
A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> of the activities mentioned above (written test, seminar/lab evaluation)				

10. Evaluation

Date	Signature of course coordinator	Signature of seminar coordinator
29.04.2020	Assoc. Prof. PhD. Habil. Sanda Micula	Lecturer PhD. Mihai Iancu

Date of approval

Signature of the head of department

.....

.....