SYLLABUS

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Functional Analysis (Analiză funcțională)				
(ro)						
2.2 Course coordinator			Co	Conf. dr. Brigitte Breckner		
2.3 Seminar coordinator		Conf. dr. Brigitte Breckner				
2.4. Year of study	3	2.5 Semester	5	2.6. Type of evaluation	E	2.7 Type of discipline O
2.8 Code of the disc	cipline	MLE0004		•		· · ·

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				45	
Additional documentation (in libraries, on electronic platforms, field documentation)				10	
Preparation for seminars/labs, homework, papers, portfolios and essays				20	
Tutorship				15	
Evaluations				4	
Other activities:				-	
3.7 Total individual study hours		94			1
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	linear algebra; general topology; mathematical analysis
4.2. competencies	abstract and logical thinking

6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

<u> </u>	C1.1 To identify the appropriate notions, to describe the speficic topic and to use an
sional encies	appropriate language.
Professional competencie	C1.3 To apply correctly basic methods and principles in order to solve mathematical problems.
	CT1 To apply efficient and rigorous working rules, to manifest responsible attitudes
Transversal competencies	towards the scientific and didactic fields, respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Presentation of the basic concepts and fundamental results of Functional Analysis
7.2 Specific objective of the discipline	To become familiar with the abstract thinking and the problematization specific to Functional Analysis

8. Content

8.1 Course	Teaching methods	Remarks
 Basics of linear spaces (definition, linear subspaces, linear hull, basis, linear functionals, sublinear functionals) Basics of linear spaces (the extension lemma of Helly, the Hahn–Banach theorem for real linear spaces) 	Lecture with mathematical proofs, problematization, discussion Lecture with mathematical proofs, problematization, discussion	
3. Basics of linear spaces (the relation between complex linear functionals and real linear functionals, the Hahn–Banach theorem for complex linear spaces, the Bohnenblust-Sobczyk-Suhomlinov theorem)	Lecture with mathematical proofs, problematization, discussion	
4. Linear topological spaces (definition, basic properties)	Lecture with mathematical proofs, problematization, discussion	

5. Locally convex spaces (preliminaries: the topology	Lecture with
generated by a family of functions; the topology of	mathematical proofs,
locally convex spaces, seminormed spaces)	problematization,
sound spaces, seminormed spaces,	discussion
6. Normed spaces (equivalence of two norms, the	Lecture with
equivalence of norms on finite dimensional linear	mathematical proofs,
spaces, bounded sequences)	problematization, discussion
7. Normed spaces (the Riesz lemma, characterizations of	Lecture with mathematical proofs,
finite dimensional normed spaces, summable families	problematization,
of vectors in a normed space)	discussion
8. Inner product spaces (definition of the inner product,	Lecture with
properties of the inner product, characterizations of the	mathematical proofs,
norms generated by inner products, the definition of	problematization,
inner product spaces and of Hilbert spaces)	discussion
9. Inner product spaces (the continuity of the inner	Lecture with
product, orthogonality, properties of the orthogonal	mathematical proofs,
complement, best approximation points,	problematization,
chracterizations of best approximation points)	discussion
10. Inner product spaces (the orthogonal decomposition	Lecture with
of an inner product space, the orthogonal	mathematical proofs, problematization,
decomposition of a Hilbert space, orthonormal	discussion
families, orthonormal bases, characterizations of	
orthonormal bases in inner product spaces and in	
Hilbert spaces, Fourier coefficients and Fourier	
expansions)	
11. Continuous linear operators (characterizations of the	Lecture with
continuity of linear operators between locally convex	mathematical proofs,
spaces, characterizations of the continuity of linear	problematization, discussion
operators between normed spaces, the normed space of	discussion
linear continuous operators between normed spaces)	
12. Continuous linear operators between normed spaces	Lecture with
(pointwise convergence of sequences of continuous	mathematical proofs,
linear operators, principle of condensation of	problematization,
singularities, the uniform boundedness principle)	discussion
	Leature with
13. Continuous linear operators between normed spaces (the Densch Steinbaus theorem, the completeness of	Lecture with mathematical proofs,
(the Banach-Steinhaus theorem, the completeness of the normed space of continuous linear operators, the	problematization,
the normed space of continuous linear operators, the	discussion
convergence of quadrature formulas)	
14. Continuous linear operators between normed spaces	Lecture with
(the open mapping theorem, the bounded inverse	mathematical proofs,

theorem, the closed graph theorem)	problematization, discussion	
------------------------------------	------------------------------	--

Bibliography

Bibliografie

1. BRECKNER W. W.: Analiză funcțională, Presa Universitară Clujeană, Cluj-Napoca, 2009.

2. BREZIS H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

3. CONWAY J. B.: A Course in Functional Analysis. Second Edition, Springer-Verlag, New-York –Berlin – Heidelberg, 1999.

- 4. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage, B. G. Teubner, Stuttgart, 1992.
- 5. KANTOROVICI L.V., AKILOV G. P.: Analiză funcțională. Editura Științifică și Enciclopedică,

București, 1986.

- 6. MUNTEAN I.: Analiză funcțională, Universitatea "Babeş-Bolyai", Cluj-Napoca, 1993.
- 7. PRECUPANU T.: Analiză funcțională pe spații liniare normate, Editura Universității "Alexandru Ioan Cuza", Iași, 2005.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Basics of linear spaces	Problematization,	
	discussion, team work	
2. Basics of linear spaces	Problematization,	
	discussion, team work	
3. Review on topological notions and results used in	Problematization,	
functional analysis	discussion, team work	
4. Linear topological spaces. The inequalities of Young,	Problematization,	
Hölder and Minkowski	discussion, team work	
5. Locally convex spaces. Normed spaces (the · _p norm	Problematization,	
on the linear space \mathbf{K}^{m} , the supremum norm on the linear	discussion, team work	
space $B(T, \mathbf{K})$, the norm on the linear space l_p)		
6. Banach spaces (properties). Examples of Banach	Problematization,	
spaces: finite dimensional normed spaces; the spaces	discussion, team work	
$B(T, \mathbf{K}), CB(T, \mathbf{K}), C(T, \mathbf{K})$		
7. Examples of Banach spaces: the spaces $C^{1}[a,b]$, l_{∞} ,	Problematization,	
c, c_o, l_p	discussion, team work	
· · · ·		
8. Inner product spaces	Problematization,	
	discussion, team work	
9. The Chebyshev approximation problem. Best	Problematization,	
approximation points. Inner product spaces	discussion, team work	
10. The orthogonal decomposition of Hilbert spaces	Problematization,	
	discussion, team work	
11. Continuous linear functionals on normed spaces	Problematization,	
	discussion, team work	

(characterization of the continuity of linear functionals). Computing the norm of continuous linear operators between normed spaces		
12. Continuous linear functionals on normed spaces (the extension theorems of Hahn). The uniform and the pointwise convergence of continuous linear operators between normed spaces	Problematization, discussion, team work	
13. The general form of continuous linear functionals on Hilbert spaces	Problematization, discussion, team work	
14. The general form of continuous linear functionals on the spaces l_pBibliography	Problematization, discussion, team work	

1. BREZIS H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

2. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage. B. G. Teubner, Stuttgart, 1992.

3. POPA E.: Culegere de probleme de analiză funcțională, Editura Didactică și Pedagogică, București, 1981.

4. WERNER D.: Funktionalanalysis. Vierte, überarbeitete Auflage, Springer-Verlag, Berlin - Heidelberg - New York, 2002 .

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Functional analysis is one of the most important branches of mathematics, having applications in various domains (numerical analysis, approximation theory, optimization, PDEs, probability theory, mathematical and theoretical physics). This discipline both provides a theoretical background for such applications.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Midterm written test	40%
	Ability to perform proofs	Final written exam	50%
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the lecture	Own contributions to the exercise classes	10%
	There are valid the official rules of the faculty concerning the attendance of students to teaching		
	activities.		

10.6 Minimum performance standards

- Ability for showing that a certain functional is a norm/seminorm;
- Ability for proving the linearity and continuity of an operator or a functional, and for computing its norm;
- Knowledge of basic notions and results.

Date	Signature of course coordinator	Signature of seminar coordinator	
22.04.2020	Conf. univ. dr. Brigitte E. Breckner	Conf. univ. dr. Brigitte E. Breckner	
Date of approval 4.05.2020	Signature of the head of department Prof. univ. dr. Agratini Octavian		