SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş - Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of th	2.1 Name of the discipline Probability Theory							
2.2 Course coo	2.2 Course coordinator Prof. PhD. Agratini Octavian							
2.3 Seminar coordinator Prof. P				Prof. PhD. Agratini	Octav	vian		
2.4. Year of	2 2.5	5	4	2.6. Type ofE2.7 Type ofCompulsory/				
study	Se	mester		valuation discipline Fundamental				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					6
Evaluations					7
Other activities:					-
37 Total individual study hours 14					

3.7 Total individual study hours	44
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis 1, Mathematical Analysis 2, Algebra
4.2. competencies	Limit and Integral Calculus, Set Theory

5. Conditions (if necessary)

5.1. for the course	• Lecture room with blackboard and video projector
5.2. for the seminar/lab activities	• Seminar room with blackboard

6. Specific competencies acquired

orspeem	c competencies acquireu
ر رو میروند. competencie	 C1.1. Identification of notions, description of theories and use of specific language C2.3. Application of appropriate theoretical models of analysis for solving given problems
Transversal	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory, with focus on theoretical aspects as well as applications
7.2 Specific objective of the discipline	 Application of classical probabilistic models to solve real life problems Become familiar with classical probability distributions Know the role of sequences of random variables in the study of social phenomena

8. Content

	Transfel and the d	Deverentee
8.1 Course	Teaching methods	Remarks
1. Experiments and events. Sigma fields	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
2. Probability function. Conditional probability.		
Independence of events	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
3. Classic probabilistic models (Samplings with /		
without replacement, Poisson, Pascal, Geometric)	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
4. Sigma - fields and infinite probability spaces.	• Interactive exposure	
Properties	Explanation	
	Conversation	
	Didactical	
	demonstration	
5. Random variables: definition, properties.	• Interactive exposure	
Discrete random variables	Explanation	
	Conversation	
		I

6. Cumulative distribution function: definition,	
properties	 Interactive exposure Explanation Conversation Didactical demonstration
 Probability density function: definition, properties. Continuous random variables 	 Interactive exposure Explanation Conversation Didactical demonstration
 Random vectors, joint distribution function, joint density function. Marginal distributions and marginal densities. Properties 	 Interactive exposure Explanation Conversation Didactical demonstration
9. Operations with continuous random variables: addition, multiplication, division	 Interactive exposure Explanation Conversation Didactical demonstration
10. Numerical characteristics of random variables: expectation, variance, moments, covariance, correlation coefficient	 Interactive exposure Explanation Conversation Didactical demonstration
11. Characteristic function. Properties	 Interactive exposure Explanation Conversation Didactical demonstration
12. Sequences of random variables. Types of convergence	 Interactive exposure Explanation Conversation Didactical demonstration
13. Laws of large numbers. Weak law of large numbers. Strong law of large numbers	 Interactive exposure Explanation Conversation Didactical demonstration
14. Lindeberg condition and Central Limit Theorem Moivre - Laplace theorem.	Interactive exposureExplanationConversation

minar	Teaching methods	Remarks
Euler's Gamma and Beta functions. Properties.	Explanation,	Remarks
Combinatorics	conversation,	
Combinatories	,	
	examples.	
Probability calculus on a finite field	Explanation,	
	conversation,	
	examples.	
Conditional probability. Independent events.	Explanation,	
Bayes formula	conversation,	
	examples.	
Classical probabilistic models	Explanation,	
	conversation,	
	examples.	
Geometric probability. Exercises	Explanation,	
, i i i i i i i i i i i i i i i i i i i	conversation,	
	examples.	
Discrete random variables. Operations and	Explanation,	
exercises	conversation,	
	examples.	
Continuous random variables. Operations and	Explanation,	
exercises	conversation,	
	examples.	
Random vectors. Exercises	Explanation,	
	conversation,	
	examples.	
Numerical characteristics of random variables	Explanation,	
	conversation.	
	examples.	
. Classical inequalities for numerical	Explanation,	
characteristics of random variables	conversation,	
	examples.	
. Characteristic function. Exercises	Explanation,	
	conversation,	
	examples.	
. Sequences of random variables. Exercises	Explanation,	
1	conversation,	
	examples.	
. Convergence of sequences of random	Explanation,	
variables	conversation,	
	examples.	
. Limit theorems. Applications	Explanation,	
	conversation,	

Bibliography 1. LISEI, H., MICULA, S., SOOS, A., *Probability Theory through Problems and Applications*, Presa Universitară Clujeană, 2006.

Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of the course is important because it covers basic concepts and topics in this field.
- The course exists in the studying program of all major universities in Romania and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Know the basic principles in Probability Theory	Written exam.	80%			
10.5 Seminar	Be able to apply course concepts on solving problems in this field	Continuous observation during the semester, seminar participation.	20%			
 10.6 Minimum performance standards At least grade 5 (from a scale of 1 to 10) at the written exam 						

Date	Signature of course coordinator	Signature of seminar coordinator
28 April 2020	Prof. PhD. Agratini Octavian	Prof. PhD. Agratini Octavian
	Date of approval	Signature of the head of department
	30 April 2020	Prof. PhD. Agratini Octavian