SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor of Science
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline	Real Analysis
2.2 Course coordinator	Lect. dr. Adriana Nicolae
2.3 Seminar coordinator	Lect. dr. Adriana Nicolae
2.4. Year of study 2 2.5 Semester	4 2.6. Type of evaluation C 2.7 Type of discipline Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course supp	ort, bi	bliography, course not	es		30
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					4
Evaluations					5
Other activities				-	
3.7 Total individual study hours 69					
3.8 Total hours per semester 125					
3.9 Number of ECTS credits 5					

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 1, 2
4.2. competencies	 Analytic thinking

5. Conditions (if necessary)

5.1. for the course	Lecture hall equipped with blackboard
5.2. for the seminar /lab activities	Classroom equipped with blackboard

6. Specific competencies acquired

Professional competencies	 C1.1 Identification of notions, description of theories and use of specific language. C1.4 Recognition of main classes/types of mathematical problems and of appropriate techniques for solving them. C5.2 Use of mathematical arguments to prove mathematical results.
Transversal competencies	CT1 Application of efficient and rigorous working rules by adopting responsible attitudes towards the scientific and didactic fields for the development of the own creative potential respecting professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To acquire fundamental knowledge about general topology, general measure theory and integration, and to apply it in solving problems.
7.2 Specific objective of the discipline	• To acquire knowledge about the two main parts of the course: elements of general topology (e.g., topological spaces, separation axioms, continuity, metric spaces, compactness, connectedness) and elements of general measure theory and integration (e.g., σ-algebras, measures, outer measures, Lebesgue measure, integration of measurable functions, limit theorems).

8. Content

8.1 Course	Teaching methods	Remarks
1. Topological spaces and related definitions	Lecture, discussion, didactical	
	demonstration, problematisation	
2. Interior, closure and boundary of a set. Bases	Lecture, discussion, didactical	
of topologies	demonstration, problematisation	
3. Continuous functions. Homeomorphisms.	Lecture, discussion, didactical	
Separation axioms.	demonstration, problematisation	
4. Metric spaces	Lecture, discussion, didactical	
	demonstration, problematisation	
5. Compactness in topological spaces and in	Lecture, discussion, didactical	
metric spaces. Compactness and continuous	demonstration, problematisation	
functions		
6. Connectedness in topological spaces	Lecture, discussion, didactical	
	demonstration, problematisation	
7. Algebras and σ-algebras. Measures	Lecture, discussion, didactical	
	demonstration, problematisation	
8. Outer measures	Lecture, discussion, didactical	
	demonstration, problematisation	
9. The Lebesgue measure	Lecture, discussion, didactical	
	demonstration, problematisation	
10. Measurable functions	Lecture, discussion, didactical	
	demonstration, problematisation	
11. Integration of measurable functions (I)	Lecture, discussion, didactical	
	demonstration, problematisation	
12. Integration of measurable functions (II)	Lecture, discussion, didactical	
	demonstration, problematisation	
13. Limit theorems and applications (I)	Lecture, discussion, didactical	
	demonstration, problematisation	
14. Limit theorems and applications (II). The	Lecture, discussion, didactical	
relation between the Riemann and Lebesgue	demonstration, problematisation	
integrals		
Diblicamenty	ı	

Bibliography

- 1. V. Anisiu, Topologie și teoria măsurii, Universitatea "Babeș-Bolyai", Cluj-Napoca, 1993.
- 2. J.J. Benedetto, W. Czaja, Integration and modern analysis, Birkhäuser, Boston, MA, 2009.
- 3. D.L. Cohn, Measure theory, 2nd ed., Birkhäuser/Springer, New York, 2013.
- 4. R. Engelking, General topology, 2nd ed., Heldermann Verlag, Berlin, 1989.
- 5. G.B. Folland, Real analysis. Modern techniques and their applications, 2nd ed., John Wiley & Sons, Inc., New York, 1999.
- 6. J.L. Kelley, General topology. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Springer, New York-Berlin, 1975.
- 7. J.R. Munkres, Topology, 2nd ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
- 8. W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.

- 9. B. Simon, A comprehensive course in analysis. Part 1: Real analysis, American Mathematical Society, Providence, RI, 2015.
- 10. E. Stein, R. Shakarchi, Real analysis. Measure theory, integration, and Hilbert spaces, Princeton University Press, Princeton, NJ, 2005.

9.2 Comings	Tasahina mathada	Remarks
8.2 Seminar	Teaching methods	Kemarks
Topological spaces and related definitions	Discussion, problem solving, didactical demonstration	
2. Interior, closure and boundary of a set. Bases of topologies	Discussion, problem solving, didactical demonstration	
3. Continuous functions. Homeomorphisms. Separation axioms.	Discussion, problem solving, didactical demonstration	
4. Compactness	Discussion, problem solving, didactical demonstration	
 Compactness in topological spaces and in metric spaces. Compactness and continuous functions 	Discussion, problem solving, didactical demonstration	
6. Connectedness in topological spaces	Discussion, problem solving, didactical demonstration.	
7. Algebras and σ-algebras. Measures	Discussion, problem solving, didactical demonstration	
8. Outer measures	Discussion, problem solving, didactical demonstration	
9. The Lebesgue measure	Discussion, problem solving, didactical demonstration	
10. Measurable functions	Discussion, problem solving, didactical demonstration	
11. Integration of measurable functions (I)	Discussion, problem solving, didactical demonstration	
12. Integration of measurable functions (II)	Discussion, problem solving, didactical demonstration	
13. Limit theorems and applications (I)	Discussion, problem solving, didactical demonstration	
14. Limit theorems and applications (II). The relation between the Riemann and Lebesgue integrals.	Discussion, problem solving, didactical demonstration	

Bibliography (in addition to the books mentioned before which also contain exercises)

- 1. A.V. Arkhangel'skiĭ, V.I. Ponomarev, Fundamentals of general topology: Problems and exercises, D. Reidel Publishing Co., Dordrecht, 1984.
- 2. R.L. Schilling, Measures, integrals and martingales, Cambridge University Press, New York, 2005.
- 3. W.J. Kaczor, M.T. Nowak, Problems in Mathematical Analysis III. Integration, American Mathematical Society, Providence, RI, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards. This discipline is useful in preparing future teachers and researchers in mathematics, but is also addressed to those who use various modern mathematical methods and techniques in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade
10.4 Course	- Knowledge of basic	- Test, exam	- Test: 30%

	notions, examples and	- Lecture and seminar	- Exam: 70%
	results	activity	- Lecture and seminar
	- Ability to prove		activity: bonus max.
	theoretical results		5%
10.5 Seminar/lab	- Problem solving using		
activities	concepts and results		
	acquired during the		
	lecture classes		
	- Attendance according		
	to the rules of the		
	faculty		
10.6 Minimum performance standards			
Both the grade at the exam and the final average should be at least 5.			

Date 4.05.2020	Signature of course coordinator Lect. dr. Adriana Nicolae	Signature of seminar coordinator Lect. dr. Adriana Nicolae
Date of approval		Signature of the head of department
•••••		Prof. dr. Octavian Agratini