SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics for Computer Science
Qualification	r i r i r i r i r i r i r i r i r i r i

2. Information regarding the discipline

2.1 Name of the discipline Basic Mathematics							
2.2 Course coor	dina	ator		Conf. Dr. Teodor G	rosa	n	
2.3 Seminar coordinator				Conf. Dr. Teodor Grosan			
2.4. Year of	1	2.5	1	2.6. Type of	С	2.7 Type of	F
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					
3.7 Total individual study hours		33			•
20 T (11		75			

3.8 Total hours per semester	75
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1. curriculum	•	Elementary high-school calculus
4.2. competencies	•	Logical thinking abilities

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

ional encies	C4.1 Defining basic concepts, theory and mathematical models C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving, problems
Profess competo	C4.5 Identifying the appropriate models and methods for solving problems
	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes towards
al ies	the scientific and didactic fields, respecting the professional and ethical principles.
ers	CT3 Use of efficient methods and techniques for learning, information, research and development
nsv npet	of abilities for knowledge acquiring, for adapting to the needs of a dynamic society and for
Tra con	communication in a widely used foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Knowledge, understanding and use of main concepts and results high- school calculus
7.2 Specific objective of the discipline	• Mathematical manipulation of mathematical theories, concepts and symbols. Arithmetic, sequences in R, real functions, matrices, algebraic structures, differential and integral calculus in R

8. Content

8.1 Course	Teaching methods	Remarks
1. Sets (N,Z,Q,R,R\Q). Mathematical induction	Lecture, discussion,	
	discussion of case.	
2. Combinatorics. Geometric and arithmetic series	Lecture, discussion,	
	discussion of case.	
3. Functions. Equations	Lecture, discussion,	
	discussion of case.	
4.Polynomials	Lecture, discussion,	
	discussion of case	
5. Sequences in R	Lecture, discussion,	
	discussion of case.	
6. Limit of functions. Continuity of real functions	Lecture, discussion,	
	discussion of case.	
7.Evaluation	Written exam	50% of the final grade
8. Derivability of real functions	Lecture, discussion,	
	discussion of case.	
10. Linear systems of equations	Lecture, discussion,	
	discussion of case.	
11. Integrals	Lecture, discussion,	
	discussion of case	
12. Algebraic structures	Lecture, discussion,	
	discussion of case.	
13. Elements of geometry	Lecture, discussion,	
	discussion of case.	
14. Evaluation	Written exam	50% of the final grade

Bibliografie

[1] D. ANDRICA, D. I. DUCA, I. PURDEA, I. POP: Matematica de bază, Editura Studium, Cluj-Napoca, 2005.

[2] Ş. COBZAŞ: Analiză matematică (Calcul diferențial), Presa Universitară Clujeană, Cluj-Napoca, 1997.

[3] D. I. DUCA, M. MEGAN, I. PURDEA, O. POP: Matematică pentru clasa a XII-a, Editura GIL Educațional, Zalău, 1999.

[4] G. M. FIHTENHOLȚ, Curs de calcul diferențial și integral (vol.I și II), Editura Tehnică, București, 1963, 1965.

[5] M. MEGAN, A. L. SASU, M. NEAMŢU şi A. CRĂCIUNESCU: Bazele analizei matematice prin exerciții şi probleme, Editura Helicon, Timişoara,1996.

8.2 Seminar / laborator	Teaching methods	Remarks
1. Sets (N,Z,Q,R,R\Q). Mathematical induction.	Discussion, problem	
Combinatorics. Geometric and arithmetic series	solving, self-study,	
	team work.	
2. Functions. Equations. Polynomials	Discussion, problem	
	solving, self-study,	
	team work.	
3. Sequences in R. Limit of functions	Discussion, problem	
	solving, self-study,	
	team work	
4. Continuity of real functions. Derivability of real	Discussion, problem	
functions	solving, self-study,	
	team work.	
5. Linear systems of equations	Discussion, problem	
	solving, self-study,	
	team work.	
6. Integrals	Discussion, problem	
	solving, self-study,	
	team work.	
7. Algebraic structures. Elements of geometry		

Bibliografie

[6] D. M. BĂTINEȚU, I. V. MAFTEI, I.M. STANCU-MINASIAN: Exerciții și probleme de analiză matematică pentru clasele a XI-a și a XII-a, Editura Didactică și Pedagogică, București, 1981.

[7] C. NĂSTĂSESCU, C. NIȚĂ, M. BRANDIBURU, D. JOIȚA: Exerciții și probleme de algebră pentru clasele IX – XII, Editura Didactică și Pedagogică București.

[8] D. I. DUCA, E. DUCA: Exerciții și probleme de analiză matematică (vol. 1 și 2), Casa Cărții de Stiință, Cluj-Napoca, 2009.

[9] I. STAMATE, I. CRIȘAN: Culegere de probleme de algebră și analiză matematică pentru licee, Editura Didactică și Pedagogică, București, 1969.

[10] I. STAMATE, I. STOIAN: Culegere de exerciții și probleme de algebră pentru licee, Editura Didactică și Pedagogică, București, 1979.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad. This discipline is useful in preparing future teachers and researchers in, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowledge of concepts	Written midterm evaluation	50%+50%
	and basic results	and final term evaluation	

	Ability to apply theory in		
	solving problems		
10.5 Seminar/lab activities			
10.6 Minimum performance	ce standards		
> At least grade 5 (fr	om a scale of 1 to 10) at both	written exam and seminar activ	vity during the
semester.			

Date	Signature of course coordinator	Signature of seminar coordinator
.4.05.2020	Conf.dr. Teodor Grosan	Conf.dr. Teodor Grosan
Date of approval	Si	gnature of the head of department
30.04.2020		Prof.dr. Octavian Agratini