SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University, Cluj-Napoca
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Licence
1.6 Study programme / Qualification	Mathematics and Computer Science

2. Information regarding the discipline

2.1 Name of the di	scipl	ine					
(en)	(en)		Convex Analysis				
(ro)			Analiză convexă				
2.2 Course coordinator		Trif Tiberiu-Vasile					
2.3 Seminar coordinator		Trif Tiberiu-Vasile					
2.4 Year of study	2	2.5 Semester	3	2.6. Type of	VP	2.7 Type of	optional
				evaluation discipline			
2.8 Code of theMLR0072							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28	
Time allotment:						
					urs	
Learning using manual, course suppor	t, bibl	iography, course notes	5		20	
Additional documentation (in libraries	, on e	lectronic platforms, fie	eld do	cumentation)	9	
Preparation for seminars/labs, homework, papers, portfolios and essays					15	
Tutorship						
Evaluation					15	
Other activities:						
3.7 Total individual study hours69						
3.8 Total hours per semester 125						
3.9 Number of ECTS credits 6						

3.8 Total hours per semester	125
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1 curriculum	• Calculus 1 (Calculus in R)	
	• Calculus 2 (Calculus in R^n)	
4.2 competencies	Logical thinking abilities, problematisation	

5. Conditions (if necessary)

5.1 For the course	•	Classroom with adequate infrastrusture
5.2 For the seminar/lab activities	٠	Classroom with adequate infrastrusture

6. Specific competencies aquired

Professional competencies	•	C1.4 Recognizing the main classes /types of mathematical problems and selecting the appropriate methods and techniques for their solvingC2.1 Identifying the basic notions used to describe some processes and phenomena
Transversal competencies	•	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the scientific and didactic fields, respecting the professional and ethical principles

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• Getting to know some basic notions and results concerning convex
discipline	Tunctions
	• Getting to know some basic notions and results from convex analysis
7.2 Specific objectives of	• Presenting various characterization theorems of convex functions;
the discipline	based on them the student will be able to establish wether a given
	function is convex or not
	• Getting to know some specific fundamental properties of convex
	functions
	• Aplying the general inequalities specific to convex functions in
	proving other concrete inequalities
	• Solving some concrete convex optimization problems

8. Content

8.1 Course	Teaching methods	Remarks
1. Convex functions of a real variable: the modern definition	Lecture, discussion,	[4], pp. 93 – 102
of convexity, characterizations of real valued functions of a	proof,	[9], pp. 3 – 7
real variable and their regularity properties (existence of side	problematisation	
derivatives, continuity, Lipschitz continuity).		
2. Convex functions of a real variable: characterization by	Lecture, discussion,	[4], pp. 102 – 103
means of support line, the Hermite-Hadamard inequality,	proof,	pp. 107 – 108
characterizations of convexity by means of the first order side	problematisation	pp. 136 – 139
derivatives and by means of the second derivative, connection		[9], pp. 11 – 12
with harmonic functions.		
3. Means and their inequalities: weighted quasiarithmetic	Lecture, discussion,	[4], pp. 115 – 122
means and their comparison, weighted Hölder means and their	proof,	
comparison, Rado-Popoviciu type inequalities.	problematisation	
4. Generalizations of convex functions: Jensen-convex	Lecture, discussion,	[4], pp. 124 – 132
functions, log-convex functions and multiplicatively-convex	proof,	[9], pp. 218 – 223
functions.	problematisation	
5. Convex functions on vector spaces: definition,	Lecture, discussion,	[4], pp. 72 – 79
characterizations, examples (affine functions, sublinear	proof,	
functions, indicator functions, quadratic forms, support	problematisation	
functions).		
6+7. Continuity of convex functions on normed spaces:	Lecture, discussion,	[4], pp. 24 – 29
semicontinuous functions, characterization of semicontinuity	proof,	рр. 147 – 153

by means of sequences, the lower and the upper limit of a function at a point and their relationship with semicontinuity, the connection between continuity, Lipschitz-continuity and local boundedness in the case of convex functions defined on normed spaces, continuity of convex functions on finite dimensional normed spaces, continuity vs. Lower semicontinuity for convex functions defined on Banach spaces.	problematisation	[7], pp. 119 – 123 [9], pp. 91 – 94		
8. Directional differentiability and algebraic subdifferentiability of convex functions defined on vector spaces: side directional derivatives and their properties, algebraic subgradients and their characterization, algebraic subdifferentiability of convex functions.	Lecture, discussion, proof, problematisation	[4], pp. 154 – 159		
9. Subdifferentiability of convex functions on normed spaces: the definition of subgradients and of the subdifferential, subdifferentiability vs. algebraic subdifferentiability vs. semicontinuity, the relative interior of a set, subdifferentiability of convex functions at relatively interior points to the effective domain.	Lecture, discussion, proof, problematisation	[4], pp. 159 – 163		
10. Differentiable convex functions of several variables: characterization of convexity for differentiable and twice differentiable functions of n real variables.	Lecture, discussion, proof, problematisation	[4], pp. 163 – 174 [7], pp. 135 – 145 [9], pp. 97 – 103		
11. Convex optimization problems: feasible points, optimal solutions, Lagrange's function, necessary and sufficient optimality conditions.	Lecture, discussion, proof, problematisation	[1], pp. 43 – 45 [4], pp. 193 – 197 [7], pp. 145 – 152 [9], pp. 171 – 176		
12+13. The Fenchel conjugate and the Fenchel biconjugate: the Fenchel-Young inequality, the Fenchel duality theorem, closed convex functions and their characterizations, calculation of conjugates and of biconjugates of certain concrete functions.	Lecture, discussion, proof, problematisation	[1], pp. 49 – 63 pp. 76 – 87 [4], pp. 198 – 208		
14. Checking the homeworks, dicussing the midterm test papers, establishing the final grades.	Discussion			
 Bibliography BORWEIN J. M., LEWIS A. S.: Convex Analysis and Nonlinear Optimization. Theory and Examples. CMS Books in Mathematics, Springer-Verlag, 2000. BRECKNER B. E., POPOVICI N.: Convexity and Optimization. An Introduction. Editura Fundației pentru Studii Europene, Cluj-Napoca, 2006. BRECKNER W. W.: Introducere in teoria problemelor de optimizare convexa cu restrictii. Editura Dacia, Cluj, 1974. BRECKNER W. W., TRIF T.: Convex Functions and Related Functional Equations. Selected Topics. Cluj University Press, Cluj-Napoca, 2008. HIRIART-URRUTY J. B., LEMARECHAL C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, 1993. KUCZMA M.: An Introduction to the Theory of Functional Equations and Inequalities. Panstwowe Wydawnictwo Naukowe, Warszawa-Krakow-Katowice, 1985. NICULESCU C. P., PERSSON LE.: Convex Functions and Their Applications. A Contemporary Approach. Springer-Verlag, New York, 2006. PRECUPANU T.: Spatii liniare topologice si elemente de analiza convexa. Editura Academiei Romane, Demoti 1002 				
Bucuresti, 1992.	andomia Draga 1072			

- 9. ROBERTS A. W., VARBERG D. E.: Convex Functions. Academic Press, 1973.
- 10. ROCKAFELLAR R. T.: Convex Analysis. Princeton University Press, 1970.

8.2 Seminar / laboratory	Teaching methods	Remarks
1+2. Study of the convexity for certain concrete functions,	Discussion,	[2], pp. 104 – 107
applications of Jensen's inequality in proving other	problematisation	[4], pp. 189 – 191
inequalities, the AM-GM inequality as a corollary of		
convexity.		
3+4. Applications of the Hermite-Hadamard inequality	Discussion,	[2], pp. 137 – 139
(inequalities between the geometric mean, the logarithmic	problematisation	[3], pp. 73 – 74
mean and the arithmetic mean, Stirling's formula),		
characterizatio of convex functions by means of the Hermite-		
Hadamard inequality.		
5+6. Ky Fan type inequalities, the Hardy-Littlewood-Pólya	Discussion,	[2], pp. 121 – 122
majorization theorem and its applications (Popoviciu's and	problematisation	pp. 109 – 115
Petrović's inequalities).		
7+8. Log-convexity of the gamma function, the Bohr-	Discussion,	[2], pp. 126 – 129
Mollerup theorem, multiplicative convexity of the gamma	problematisation	[3], pp. 68 – 71
function.		
9+10. Jensen-convexity vs convexity on normed spaces,	Discussion,	[4], pp. 211 – 216
Bernstein-Doetsch type theorems.	problematisation	
11+12. Calculation of the subgradients for certain concrete	Discussion,	[2], pp. 172 – 176
functions on normed spaces, study of the convexity of certian	problematisation	
functions of <i>n</i> real variables.		
13+14. Solving some convex optimization problems.	Discussion,	[1], pp. 43 – 45
	problematisation	[2], p. 197

Bibliography

- 1. BORWEIN J. M., LEWIS A. S.: Convex Analysis and Nonlinear Optimization. Theory and Examples. CMS Books in Mathematics, Springer-Verlag, 2000.
- 2. BRECKNER W. W., TRIF T.: Convex Functions and Related Functional Equations. Selected Topics. Cluj University Press, Cluj-Napoca, 2008.
- 3. NICULESCU C. P., PERSSON L.-E.: Convex Functions and Their Applications. A Contemporary Approach. Springer-Verlag, New York, 2006.
- 4. ROBERTS A. W., VARBERG D. E.: Convex Functions. Academic Press, 1973.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the programme

- Convex functions are useful tools, helping the future math teacher in proving inequalities that occur in elementary mathematics
- Convex optimization knowledge will be useful to the future graduate who will work in a software company

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in grade		
10.4 Course	- knowledge of notions and				
	basic results				
	- applying the basic theoretical	Three test papers during	75%		
	results to solving concrete	the semester			
	problems				
10.5 Seminar/lab	- solving concrete problems	Solving some problems			
	with the help of theoretical	during the semester	25%		
	results from the course				
10.6 Minimum performance standards					
Active participation in course and seminar activities					

Date	Signature of course coordinate	or Signature of seminar coordinator
30.4.2020		
Date of approval	S	Signature of the head of departament