SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Differential Equations							
2.2 Course coordinatorAssoc. Prof. PhD. Marcel-Adrian Şerban							
2.3 Seminar coordinator				Assoc. Prof. PhD. Marcel-Adrian Şerban			
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	2/1
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	28/14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					15
Evaluations					10
Other activities:					-
3.7 Total individual study hours		55			

5.7 Total mulvidual study nouis	55
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis (I-II)
4.2. competencies	Mathematical Analysis (I-II), Geometry (I)

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired	
-----------------------------------	--

	• C1.2 Correct explanation and interpretation of mathematical concepts, using specific
nal cies	language
Professional competencies	• C 2.4 Comparative analysis of the results obtained by solving problems with pre-existing data
Pr	• C4.2 Explain and interpret mathematical models
	• CT 1. Applying the rules of rigorous and efficient work, manifesting responsible
	attitudes towards the scientific and didactic field, for the optimal and creative
Transversal competencies	capitalization of one's own potential in specific situations, respecting the principles and norms of professional ethics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• to present the basic concepts and results in differential equations theory
7.2 Specific objective of the discipline	 basic concepts and tools of differential equations which can be effectively solved main concepts and results concerning the qualitative theory of differential equations basic problems related to differential equations mathematical model given by differential equations

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Differential Equations	• Interactive exposure	
	Explanation	
	Conversation	
	• Didactical	
	demonstration	
2. Analysis in Banach spaces. Contraction principle.	• Interactive exposure	
Abstract data dependence principle	Explanation	
	Conversation	
	• Didactical	
	demonstration	
3. The Cauchy problem. The existence and	• Interactive exposure	
uniqueness theorem in the space	• Explanation	
	Conversation	
	• Didactical	
	demonstration	
4. The Cauchy problem. The existence and	• Interactive exposure	
uniqueness theorem in the ball	Explanation	
	Conversation	

	• Didactical
5 Mathematical markets are used by differential	demonstration
5. Mathematical models governed by differential	• Interactive exposure
equations (I)	• Explanation
	Conversation
	• Didactical
	demonstration
6. Mathematical models governed by differential	• Interactive exposure
equations (II)	• Explanation
	Conversation
	• Didactical
	demonstration
7. Linear differential equations	• Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
8. Linear differential equations with constant	• Interactive exposure
coefficients	• Explanation
	Conversation
	• Didactical
	demonstration
9. Systems of linear differential equations of first	• Interactive exposure
order	• Explanation
	Conversation
	Didactical
	demonstration
10. Systems of linear differential equations with	• Interactive exposure
constant coefficients	• Explanation
	Conversation
	Didactical
	demonstration
11. Dynamical systems generated by autonomous	Interactive exposure
scalar differential equations	• Explanation
	Conversation
	Didactical
	demonstration
12. Dynamical systems generated by planar system	Interactive exposure
of differential equations	• Explanation
	Conversation
	Didactical
	demonstration
13. Applications of dynamical systems theory to	Interactive exposure
some models	Conversation
14. Approximating methods for the Cauchy problem	Interactive exposure
	Conversation
Bibliography	- contribution

Bibliography

1. I. A. Rus, Ecuații diferențiale, ecuații integrale si sisteme dinamice, Transilvania Press, Cluj-Napoca, 1996.

 M.A. Şerban, Ecuații şi sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.
 S.L. Campbell, R. Haberman, Introduction to Differential Equations with Dynamical Systems, Princeton Univ. Press, 2008

8.2 Seminar	Teaching methods	Remarks
1. Solvable first order differential equations (I): separable differential equations, reducible to separable differential equations, Euler homogeneous differential equations	 Exercise Explanation Didactical demonstration 	
2. Solvable first order differential equations (II): linear differential equations, Bernoulli equations, Riccati equations	 Exercise Explanation Didactical demonstration 	
3. Solvable first order differential equations in implicit form: Claireaut equations, Lagrange equation, exact equation	 Exercise Explanation Didactical demonstration 	
4. Higher order solvable differential equations	 Exercise Explanation Didactical demonstration 	
5. Initial value problems. Boundary value problems	 Exercise Explanation Didactical demonstration 	
6. Written test	•	
7. The Cauchy problem: applications of the existence and uniqueness theorems	 Exercise Explanation Didactical demonstration 	
8. Linear differential equations	 Exercise Explanation Didactical demonstration 	
9. Linear differential equations with constant coefficients	 Exercise Explanation Didactical demonstration 	
10. Systems of linear differential equations of first order	 Exercise Explanation Didactical demonstration 	
11. Systems of differential equations with constant coefficient	 Exercise Explanation Didactical demonstration 	
12. Dynamical systems generated by autonomous scalar differential equations: equilibrium solutions, stability	 Exercise Explanation Didactical demonstration 	
13. Dynamical systems generated by planar system of differential equations: equilibrium solutions, stability	 Exercise Explanation Didactical demonstration 	

Γ

14. Final and synthesis problems	• Exercise
	• Explanation
	• Didactical
	demonstration

Bibliography

1. R. PRECUP, Ecuatii diferentiale, Risoprint, Cluj-Napoca, 2011.

2. G. MOROSANU, Ecuatii diferentiale. Aplicatii, Ed. Acad., Bucuresti, 1990.

3. G. MICULA, P. PAVEL, Ecuatii diferentiale si integrale prin exercitii si probleme, Ed. Dacia, Cluj, 1989.

4. M.A. Şerban, Ecuații și sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.

8.3 Laboratory	Teaching methods	Remarks
1. Introduction to MAPLE	• Exercise	
	Explanation	
	Individual study	
2. Solving differential equations with MAPLE	Exercise	
	Explanation	
	Individual study	
3. Mathematical models given by differential	Exercise	
equations	Explanation	
	Individual study	
4. Systems of differential equations	Exercise	
	Explanation	
	Individual study	
5. Higher order linear differential equations	Exercise	
	Explanation	
	Individual study	
6. Equilibrium points. Stability	Exercise	
	Explanation	
	Individual study	
7. Laboratory test		
Bibliography		

Bibliography

1. S. Lynch, Dynamical Systems with Applications using MAPLE, Birkauser, 2001.

2. M.A. Şerban, Ecuații și sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The syllabus of this course is focused on the differential equations theory, as a basis for a better understanding of the partial differential equations and mathematical models. Moreover, the course propose the following three important directions:

1. the understanding of the main concepts and methods in the classical theory of differential equations;

2. the use of Banach's contraction principle in the qualitative theory of differential equations

3. the applications of the differential equations theory to real world problems.

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad. This discipline is useful in preparing future teachers and researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• Knowledge of concepts and basic results		
	• Ability to justify by proofs theoretical results	Final written exam	70%
10.5 Seminar/lab	• Ability to apply	Seminar written test	20%
activities	concepts and results acquired during the course in Differential	Laboratory practical test	10%
10.6 Minimum performat	Equations		
		criterion (75% seminar attend	lance 00% laboratory
• Furthment of the sen attendance)		cinemon (75% seminar attend	lance, 90% laboratory
• Successful passing of	the exam is conditioned by t	he final grade that has to be a	t least 5.

Date	Signature of course coordinator	Signature of seminar coordinator
04.05.2020	Assoc. Prof. PhD. Marcel-Adrian ŞERBAN	Assoc. Prof. PhD. Marcel-Adrian ŞERBAN

Date of approval

.....

Signature of the head of department

Prof. PhD. Octavian AGRATINI