

SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeș-Bolyai University, Cluj-Napoca

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science – Mathematics

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Mathematics Computer Science

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Data Structures

2.2 Course coordinator Lect. PhD. Oneț-Marian Zsuzsanna

2.3 Seminar coordinator Lect. PhD. Oneț-Marian Zsuzsanna

2.4. Year of

 study

1 2.5

Semester

2 2.6. Type of

evaluation

C 2.7 Type of

discipline

Compulsory

2.8 Code of the

discipline

MLE5022

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 3 Of which: 3.2 course 2 3.3

seminar/laboratory

1 sem

3.4 Total hours in the curriculum 42 Of which: 3.5 course 28 3.6

seminar/laboratory

14

Time allotment: hours

Learning using manual, course support, bibliography, course notes 40

Additional documentation (in libraries, on electronic platforms, field documentation) 16

Preparation for seminars/labs, homework, papers, portfolios and essays 22

Tutorship 15

Evaluations 15

Other activities:

3.7 Total individual study hours 108

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum Fundamentals of programming

4.2. competencies Medium programming skills

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es
 C4.1. Definition of concepts and basic principles of computer science, and their mathematical

models and theories.

C4.3. Identification of adequate models and methods for solving real problems

C4.5. Adoption of formal models in specific applications from different domains

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical

activities and creative capitalization of own potential, while respecting principles and rules for

professional ethics

CT3. Use efficient methods and techniques for learning, knowledge gaining, and research and

develop capabilities for capitalization of knowledge, accommodation to society requirements and

communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

 Introduction. Data structures. Abstract

Data Types

 Data abstractization and encapsulation

 Pseudocode conventions

 Complexities

- Exposure

- Description

- Examples

- Didactical

demonstration

 Arrays. Iterators

 Dynamic array

 Amortized analysis

- Exposure

- Description

- Conversation

5.1. for the course Class room with projector

5.2. for the seminar /lab

activities

7.1 General objective of the

discipline

 Study of data structures that can be used to implement abstract data

types (arrays, linked lists, heaps, hash tables, binary trees).

7.2 Specific objective of the

discipline

 Study of the concept of abstract data type and the most frequently used

abstract data types in application development.

 Study of the data structures that can be used to implement these

abstract data types.

 Develop the ability to work with data stored in different data structures

and to compare the complexities of their operations.

 Develop the ability to choose the appropriate data structure in order to

model and solve real world problems.

 Acquire knowledge necessary to work with existing data structure

libraries.

 Interface of an iterator - Didactical

demonstration

 Binary Heap

 Definition, representations, specific

operations

 HeapSort

- Exposure

- Description

- Conversation

- Didactical

demonstration

 Linked Lists

 Singly linked list: representation and

operations

 Doubly linked list: representation and

operations

 Iterator for linked lists

- Exposure

- Description

- Conversation

- Didactical

demonstration

- Case study

 Linked Lists II

 Sorted linked lists: representation and

operations

 Linked lists on arrays: representation

and operations

- Exposure

- Description

- Conversation

- Didactical

demonstration

 Abstract Data Types

 ADT Set: description, domain,

interface and possible representations

 ADT Map: description, domain,

interface and possible representations

 ADT Matrix: description, domain,

interface and possible representations

- Exposure

- Description

- Conversation

- Didactical

demonstration

 Abstract Data Types II

 ADT List: description, domain,

interface and possible representations

 ADT Stack: description, domain,

interface and possible representations

on arrays and linked lists

 ADT Queue: description, domain,

interface and possible representations

on arrays, circular arrays and linked

lists.

 Problems solved with stacks and

queues

- Exposure

- Description

- Conversation

- Didactical

demonstration

- Case studies

 ADT Priority Queue

 Description, domain, interface and

possible representations on arrays,

linked lists and heaps

- Exposure

- Description

- Conversation

- Didactical

demonstration

- Case studies

 Hash Table

 Direct address tables

 Hash tables: description, properties

 Collision resolution through separate

chaining

- Exposure

- Description

- Conversation

- Didactical

demonstration

 Hash Table II

 Collision resolution through coalesced

- Exposure

- Description

chaining

 Collision resolution through open

addressing

 Containers represented over hash

tables

- Conversation

- Didactical

demonstration

 Trees

 Concepts related to trees

 Applications of trees

 Possible representations

 Tree traversals

- Exposure

- Description

- Conversation

- Didactical

demonstration

 Binary Trees

 Description, properties

 Domain and interface of ADT Binary

Tree

 Tree traversals: recursive/non

recursive algorithms.

- Exposure

- Description

- Conversation

- Didactical

demonstration

 Binary Search Trees

 Description, properties

 Representation

 Operations: recursive and non-

recursive algorithms

Containers represented over binary

search tables

- Exposure

- Description

- Conversation

- Didactical

demonstration

 Final Exam - Final Exam

Bibliography

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT

Press, 2009

2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008

3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016

4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.2 Seminar Teaching methods Remarks

 Seminar is structured as 2

hour classes every second

week.

1. ADT Bag with generic elements.

Representations and implementations on an

array. Iterator for ADT Bag

- Exposure

- Conversation

- Examples

- Debate

2. Complexities - Exposure

- Examples

- Debate

- Conversation

3. Sorted Multi Map – representation and

implementation on a singly linked list.

- Exposure

- Examples

- Debate

- Conversation

4. Bucket sort, Lexicographic sort, radix sort.

Merging two singly linked lists

- Exposure

- Examples

- Debate

- Conversation

5. Written test and project theme allocation. - Written test The test takes 1 hour

6. Hash tables. Collision resolution through

coalesced chaining.

- Exposure

- Examples

- Debate

- Conversation

7. Binary Trees - Exposure

- Examples

- Debate

- Conversation

Bibliography

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT

Press, 2009

2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008

3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016

4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The content of this discipline is consistent with the content of the Data structures and algorithms

courses from other universities in Romania and abroad.

 The content of the discipline ensures the necessary fundamental knowledge needed for using abstract

data types and data structures in application design.

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course Correctness and

completeness of the

assimilated knowledge

 Knowledge of

applying the course

concepts

Written evaluation (in the

last lecture): written exam

60%

 Realization of a project

– design, development

and documentation of

an application that uses

an ADT and a given

data structure as

representation for the

ADT. Project

allocation will be done

in Seminar 5.

Respecting the

Correctness of the

documentation

(specifications, algorithms,

complexities) and

implementation

20%

deadlines for lab

presentation

10.6 Seminar Written test from

seminar 5.

 Project stage

Written test (70% from the

seminar grade)

20%

Project stage (30% from

seminar grade)

10.6 Minimum performance standards

 Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable

level of knowledge and understanding of the domain, that he/she is capable of expressing the

acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for

problem solving.

 For participating at the written exam, a student must have at least 5 seminar attendances.

 For successfully passing the examination, a student must have at least 5 for the laboratory and as a

final grade.

Date Signature of course coordinator Signature of seminar coordinator

043.05.2020 Lect. PhD. Oneț-Marian Zsuzsanna Lect. PhD. Oneț-Marian Zsuzsanna

Date of approval Signature of the head of department

 Lect. PhD. Sterca Adrian

