SYLLABUS

in morning one programme			
1.1 Higher education	Babeș-Bolyai University, Cluj-Napoca		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computer Science – Mathematics		
1.5 Study cycle	Bachelor		
1.6 Study programme / Qualification	Mathematics Computer Science		

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the c	liscipli	ne (en)	Da	ta Structures			
(ro)							
2.2 Course coordinator			Lect. PhD. Oneț-Marian Zsuzsanna				
2.3 Seminar coordinator		Le	Lect. PhD. Oneț-Marian Zsuzsanna				
2.4. Year of	1	2.5	2	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8 Code of the		MLE5022					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	33	1 sem
5.1 Hours per week	5	of which. 5.2 course	2		1 Sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					16
Preparation for seminars/labs, homework, papers, portfolios and essays					22
Tutorship					15
Evaluations					15
Other activities:					
3.7 Total individual study hours108					
3.8 Total hours per semester150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	•	Fundamentals of programming
4.2. competencies	•	Medium programming skills

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

-	
nal cies	C4.1. Definition of concepts and basic principles of computer science, and their mathematical models and theories.
fessio	C4.3. Identification of adequate models and methods for solving real problems
Pro	C4.5. Adoption of formal models in specific applications from different domains
al cies	CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
Transvers competenc	CT3. Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees).
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content		
8.1 Course	Teaching methods	Remarks
Introduction. Data structures. Abstract	- Exposure	
Data Types	- Description	
• Data abstractization and encapsulation	- Examples	
Pseudocode conventions	- Didactical	
Complexities	demonstration	
Arrays. Iterators	- Exposure	
• Dynamic array	- Description	
Amortized analysis	- Conversation	

• Interface of an iterator	- Didactical
 Binary Heap Definition, representations, specific operations HeapSort 	 Exposure Description Conversation Didactical demonstration
 Linked Lists Singly linked list: representation and operations Doubly linked list: representation and operations Iterator for linked lists Linked Lists II Sorted linked lists: representation and operations Linked lists on arrays: representation and operations 	 Exposure Description Conversation Didactical demonstration Case study Exposure Description Conversation Didactical demonstration
 Abstract Data Types ADT Set: description, domain, interface and possible representations ADT Map: description, domain, interface and possible representations ADT Matrix: description, domain, interface and possible representations ADT Matrix: description, domain, interface and possible representations Abstract Data Types II ADT List: description, domain, interface and possible representations ADT Stack: description, domain, interface and possible representations on arrays and linked lists ADT Queue: description, domain, interface and possible representations on arrays, circular arrays and linked lists. 	 Exposure Description Conversation Didactical demonstration Exposure Description Conversation Didactical demonstration Case studies
 ADT Priority Queue Description, domain, interface and possible representations on arrays, linked lists and heaps 	 Exposure Description Conversation Didactical demonstration Case studies
 Hash Table Direct address tables Hash tables: description, properties Collision resolution through separate chaining Hash Table II 	 Exposure Description Conversation Didactical demonstration Exposure
Collision resolution through coalesced	- Description

 chaining Collision resolution through open addressing Containers represented over hash tables 	 Conversation Didactical demonstration 	
Trees Concepts related to trees Applications of trees Possible representations Tree traversals Binary Trees	 Exposure Description Conversation Didactical demonstration Exposure 	
 Description, properties Domain and interface of ADT Binary Tree Tree traversals: recursive/non recursive algorithms. 	 Description Conversation Didactical demonstration 	
 Binary Search Trees Description, properties Representation Operations: recursive and non-recursive algorithms Containers represented over binary search tables 	 Exposure Description Conversation Didactical demonstration 	
Final Exam	- Final Exam	
 Bibliography 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: In Press, 2009 2. S. Skiena: The algorithms design manual, Seco 3. N. Karumanchi: Data structures and algorithms 4. M. A. Weiss: Data structures and algorithm ana 5. R. Sedgewick: Algorithms, Addison-Wesley Pu 	ntroduction to algorithms, and Edition, Springer, 2008 made easy, CareerMonk I alysis in Java, Third Editio ublishing, 1984	Third Edition, The MIT Publications, 2016 n, Pearson, 2012
8.2 Seminar	Teaching methods	Remarks
		Seminar is structured as 2 hour classes every second week.
1 ADT Bag with generic elements	- Exposure	

	week.
1. ADT Bag with generic elements.	- Exposure
Representations and implementations on an	- Conversation
array. Iterator for ADT Bag	- Examples
	- Debate
2. Complexities	- Exposure
	- Examples
	- Debate
	- Conversation
3. Sorted Multi Map – representation and	- Exposure
implementation on a singly linked list.	- Examples
	- Debate
	- Conversation
4. Bucket sort, Lexicographic sort, radix sort.	- Exposure
Merging two singly linked lists	- Examples

	- Debate	
	- Conversation	
5. Written test and project theme allocation.	- Written test	The test takes 1 hour
6. Hash tables. Collision resolution through	- Exposure	
coalesced chaining.	- Examples	
	- Debate	
	- Conversation	
7. Binary Trees	- Exposure	
	- Examples	
	- Debate	
	- Conversation	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures and algorithms courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Type of activity	10	0.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	•	Correctness and completeness of the assimilated knowledge Knowledge of applying the course concepts	Written evaluation (in the last lecture): written exam	60%
	•	Realization of a project – design, development and documentation of an application that uses an ADT and a given data structure as representation for the ADT. Project allocation will be done in Seminar 5. Respecting the	Correctness of the documentation (specifications, algorithms, complexities) and implementation	20%

	deadlines for lab presentation					
10.6 Seminar	 Written test from seminar 5. Project stage 	Written test (70% from the seminar grade) Project stage (30% from seminar grade)	20%			
10.6 Minimum performance standards						

10.6 Minimum performance standards

- Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.
- For participating at the written exam, a student must have at least 5 seminar attendances. ٠
- For successfully passing the examination, a student must have at least 5 for the laboratory and as a final grade.

Date Signature of course coordinator Signature of seminar coordinator 043.05.2020 Lect. PhD. Onet-Marian Zsuzsanna Lect. PhD. Onet-Marian Zsuzsanna

Date of approval

Signature of the head of department

Lect. PhD. Sterca Adrian