SYLLABUS

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disc	cipli	ne Geometrie	Geometrie 2 (ffine Geometry)			
(ro)		Geometrie	Geometrie 2 (Geometrie afină)					
2.2 Course coordinat	tor		Lect. Dr. Iulian Simion					
2.3 Seminar coordina	ator		Lect. Dr. Iulian Simion					
2.4 Year of study	1	2.5 Semester	2	,	2.6. Type of	VP	2.7 Type of	Compulsory
			evaluation		evaluation		discipline	
2.8 Disciplinei code MLE0015								

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar	28	
Time allotment:						
Learning using manual, course support	, biblio	ography, course notes			20	
Additional documentation (in libraries,	Additional documentation (in libraries, on electronic platforms, field documentation) 20					
Preparation for seminars/labs, homework, papers, portfolios and essays					35	
Tutorship					15	
Evaluations						
Other activities:					1	
3.7 Total individual study hours 94						
3.8 Total hours per semester 150						
3.9 Number of ECTS credits 6						

4. Prerequisites (if necessary)

4.1 curriculum	Basic knowledege in algebra and analysis
	$_{\neg \land}$ A first course on analytic geometry
4.2 competencies	٨٢

5. Conditions (if necessary)

5.1 for the course	٨٢
5.2 for the seminar /lab	 ٦٨
activities	

6. Specific competencies acquired

1	
ncies	$_{7A}$ C1.1 Idetifying the notions, describing the theories and using the specific language
Professional compete	\sim C2.3 Applying the adequate analytical theoretical methods to a given problem
Transversal competencies	CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the the scientific domain and teaching training for an optimal and creative development of the personal potential in specific situations, respecting the deontological norms.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of	Basic notions and methods în the context of affine geometry
the discipline	
7.2 Specific objective of	Affine transformations
the discipline	Classification of quadrics
	Projective transformations

8. Content

8.1 Course	Teaching methods	Remarks
1. Affine spaces	Exposition, proofs,	
• Definition and examples	examples	
Cartesian coordinates		
Barycentric coordinates		
Affine subspaces		
• Alternative definition of affine spaces		
2-3. Affine subspaces	Exposition, proofs,	Two lectures
Systems of equations	examples	
• Parallelism and relative positions		
Dimension formula		
• Affine and convex hulls		
4. Affine changes of coordinates	Exposition, proofs,	
• 2D and 3D	examples	
General formula		
Applications		

5. Affine geometry 2D	Exposition, proofs,			
Pencil of lines	examples			
• Theorems of Thales, Pappus and				
Desargues				
6. Affine geometry 3D	Exposition, proofs,			
• Relative positions of planes and lines	examples			
• Pencil of planes	1			
7. Projections and reflections	Exposition, proofs,			
• Projections on a hyperplane along a line	examples			
• Projections on a line along a hyperplane	-			
• Reflections in a hyperplane				
Applications				
8. Affine transformations	Exposition, proofs,			
• Definitions, examples, properties	examples			
Homogeneous coordinates and matrices	1			
Applications				
9-10. Euclidean Geometry	Exposition, proofs.	Two lectures		
Bilinear forms	examples			
Ouadratic forms	•			
Diagonalizing quadratic forms				
Sylvester's theorem				
11-12 Quadrics	Exposition proofs	Two lectures		
Definition and examples	examples			
Tangent spaces	examples			
Classification				
13-14 Projective Geometry	Exposition proofs	Two lectures		
Projective line, plane and space	examples	I wo lectures		
Projective transformations	cxamples			
Amplications				
Applications Dibliography				
[1] E. Sarnasi, Linaar Algahra, A. gaomatria Annra	ah (Translated by I. Mont	aldi) 2000		
[1] E. Sernesi, Linear Algeora. A geometric Approx	ich (Translated by J. Mont	alul), 2009.		
[2] P.A. Blaga, Geometrie – material de curs, 2019	•			
[3] 1. Simion, Geometry 2 – material de curs, 2021				
[4] M. Iroyanov, Cours de geometrie, Lausanne, 20	011.			
[5] D. Andrica, Geometrie, Cluj-Napoca, 2017	1.1. ×			
[6] M. Craioveanu, I.D. Albu, Geometrie afină și euclidiană, Timisoara, 1982.				
[7] GH. Galbură, F. Radó, Geometrie, Bucuresti, 1979.				
[8] I.P. Popescu, Geometrie afină și euclidiană, Tin	11soara, 1984.			
[9] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culeger	e de probleme de geometri	e, Cluj-Napoca, 1979.		
8.2 Seminar	Teaching methods	Remarks		
1. Affine spaces	Dialog, problem			
Definition and examples	solving			
Cartesian coordinates				
Barycentric coordinates				
Affine subspaces				
Alternative definition of affine spaces				

2-3. Affine subspaces	Dialog, problem	Two tutorials
• Systems of equations	solving	
• Parallelism and relative positions		
Dimension formula		
• Affine and convex hulls		
4. Affine changes of coordinates	Dialog, problem	
• 2D and 3D	solving	
General formula		
Applications		
5. Affine geometry 2D	Dialog, problem	
Pencil of lines	solving	
• Theorems of Thales, Pappus and		
Desargues		
6. Affine geometry 3D	Dialog, problem	
• Relative positions of planes and lines	solving	
Pencil of planes		
7. Projections and reflections	Dialog, problem	
• Projections on a hyperplane along a line	solving	
• Projections on a line along a hyperplane		
• Reflections in a hyperplane		
Applications		
8. Affine transformations	Dialog, problem	
• Definitions, examples, properties	solving	
Homogeneous coordinates and matrices		
Applications		
9-10. Euclidean Geometry	Dialog, problem	Two tutorials
Bilinear forms	solving	
Quadratic forms		
Diagonalizing quadratic forms		
• Sylvester's theorem		
11-12. Quadrics	Dialog, problem	Two tutorials
Definition and examples	solving	
Tangent spaces		
Classification		
Applications		
13-14. Projective Geometry	Dialog, problem	Two tutorials
Projective line, plane and space	solving	
Projective transformations		
Applications		

Bibliography

[1] E. Sernesi, Linear Algebra. A geometric Approach (Translated by J. Montaldi), 2009.

[2] P.A. Blaga, Geometrie – material de curs, 2019.

[3] I. Simion, Geometry 2 – material de curs, 2021.

[4] M. Troyanov, Cours de géométrie, Lausanne, 2011.

[5] M. Craioveanu, I.D. Albu, Geometrie afină și euclidiană, Timisoara, 1982.

[6] GH. Galbură, F. Radó, Geometrie, Bucuresti, 1979.

[7] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie, Cluj-Napoca, 1979.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The material of this course serves other courses r
- a deeper understanding of linear algebra
- \neg affine transformations are necessary examples for a group theory course
- \neg quadrics are necessary examples in analysis courses
- \neg Building on a previous geometry course, classification results are presented
- $_{n}$ Applications of the theory are presented wherever appropriate

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Critical grasp of the	Two written partial exams	each 50%		
	learned material, ability	at the middle and at the			
	to use what was learned	end of the semester			
10.5 Seminar					
10.6 Minimum performation	nce standards				
مد 75% attendance of	of tutorials is mandatory				
\rightarrow At least grade 5 for	or each of the partial exams				
Minimal requiren مر	nents for the content:				
- parametric and (Cartesian coordinates of line	s, planes and hyperplanes			
- - relative positions of lines and hyperplanes					
\rightarrow - projections and reflections in dimension 2 and 3					
- homogeneous matrices of affine transformations					
- quadrics in canonical form					

Date	Signature of course coordinator	Signature of seminar coordinator
12. February 2021	Lect. Dr. Iulian Simion	Lect. Dr. Iulian Simion

Date of approval

Signature of the head of department

Prof. Dr. Octavian Agratini

.....