SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	•	Potential theory and elliptic boundary value problems (Teoria potențialului și probleme eliptice pe frontieră)					
2.2 Course coordinator				Professor PhD Mirela KOHR				
2.3 Seminar coordinator				Professor PhD Mirel	a KO	HR		
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	DS/Optional	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					45
Additional documentation (in libraries, on electronic platforms, field documentation)					45
Preparation for seminars/labs, homework, papers, portfolios and essays					45
Tutorship					34
Evaluations					20
Other activities:					-
2.7 Total individual study hours		190			•

3.7 Total individual study hours	189
3.8 Total hours per semester	225
3.9 Number of ECTS credits	9

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Methods in Fluid Mechanics; Nonlinear Partial Differential Equations; Nonlinear Applied Analysis
4.2. competencies	 There are useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

o. Spc	CIIIC	competencies acquired
	•	Ability to understand and manipulate concepts, individual results and advanced mathematical
Professional competencies		Ability to model and analyze from the mathematical point of view real processes from other sciences, fluid mechanics and porous media, economics, and engineering. Ability to use scientific language and to write scientific reports and papers.
	•	Ability to inform themselves, to work independently or in a team in order to carry out studies
		and to solve complex problems.
Transversal competencies	•	Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use mathematical models.
Tran	•	Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and results of potential theory in the study of linear elliptic boundary value problems. Knowledge, understanding and combine advances mathematical methods, potential theory, the fixed point theory and topological degree theory in the study of nonlinear elliptic boundary value problems in fluid mechanics, porous media, and other sciences.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in potential theory. Knowledge, understanding and use of advanced topics in mathematics in the study of elliptic boundary value problems. Ability student involvement in scientific research.

8. Content

8.1	Course	Teaching methods	Remarks
1.	Boundary value problems for the Laplace operator.	Lectures, modeling, didactical	
	Classical solutions and layer potential	demonstration, conversation.	
	representations.	Presentation of alternative explanations.	
2.	Basic theory of pseudo-differential operators on	Lectures, modeling, didactical	
	\mathbf{R}^{n} : The class \mathbf{S}^{m} . The definition of pseudo-	demonstration, conversation.	
	differential operator of order m. Continuity of	Presentation of alternative explanations.	
	pseudo-differential operators in Sobolev spaces.	_	
3.	Elliptic pseudo-differential operators on \mathbf{R}^{n} .	Lectures, modeling, didactical	
	Parametrix and fundamental solution.	demonstration, conversation.	
		Presentation of alternative explanations.	
4.	Strongly elliptic operators and elliptic systems in	Lectures, modeling, didactical	
	the sense of Agmon-Douglis-Nirenberg on \mathbb{R}^n . The	demonstration, conversation.	
	Stokes and Brinkman systems with	Presentation of alternative explanations.	
	constant/variable coefficients. Fredholm operators.		
5.	Potential theory for the Stokes and Brinkman	Lectures, modeling, didactical	

	:11	I a control of
	systems with constant/variable coefficients on	demonstration, conversation.
	Lipschitz domains in R ⁿ (I): Related layer potential	Presentation of alternative explanations.
	operators. Boundedness and compactness results in	
	the scale of L ^p and Sobolev spaces.	
6.	Potential theory for the Stokes and Brinkman	Lectures, modeling, didactical
	systems with constant/variable coefficients on	demonstration, conversation.
	Lipschitz domains in R ⁿ (II): Fredholm and	Presentation of alternative explanations.
	invertibility results for related layer potential	
	operators in L ^p and Sobolev spaces.	
7.	Linear elliptic boundary value problems on	Lectures, modeling, didactical
	Lipschitz domains in R ⁿ . Variational and potential	demonstration, conversation.
	approach. Well-posedness results in L ^p and	Presentation of alternative explanations.
	Sobolev spaces (I).	•
8.	Linear elliptic boundary value problems on	Lectures, modeling, didactical
	Lipschitz domains in R ⁿ . Variational and potential	demonstration, conversation.
	approach. Well-posedness results in L ^p and	Presentation of alternative explanations
	Sobolev spaces (II).	_
9.	Boundary value problems for linear elliptic	Lectures, modeling, didactical
	systems with nonlinear boundary conditions on	demonstration, conversation.
	Lipschitz domains in R ⁿ . Existence and uniqueness	Presentation of alternative explanations.
	based on the results in the linear PDE theory and	-
	topological degree theory.	
10	. Semilinear elliptic boundary value problems on	Lectures, modeling, didactical
	bounded Lipschitz domains with arbitrary data in	demonstration, conversation.
	L ^p and Sobolev spaces.	Presentation of alternative explanations.
11	. Boundary value problems for nonlinear elliptic	Lectures, modeling, didactical
	systems on Lipschitz domains in \mathbf{R}^{n} , with	demonstration, conversation.
	nonlinear boundary conditions. Existence and	Presentation of alternative explanations.
	uniquness based on the results in the linear PDE	•
	theory and fixed point theorems.	
12	. Transmission problems for the Navier-Stokes and	Lectures, modeling, didactical
	Darcy-Forchheimer-Brinkman systems with	demonstration, conversation.
	variable coefficients on Lipschitz domains in R ⁿ	Presentation of alternative explanations.
	(n=2,3). Applications to porous media flow	-
	problems.	
-	1 3 2	1

Bibliography

- 1. Kohr, M., Pop, I., *Viscous Incompressible Flow for Low Reynolds Numbers*, WIT Press (Wessex Institute of Technology Press), Southampton (UK) Boston, 2004.
- 2. Kohr, M., *Probleme Moderne în Mecanica Fluidelor Vâscoase*, Presa Universitară Clujeană, Cluj-Napoca, 2 vols. 2000.
- 3. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., *Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains*, Potential Analysis, **38** (2013), 1123-1171.
- 4. Kohr, M., Wendland, W.L., Layer potentials and Poisson problems for the nonsmooth coefficient Brinkman system in Sobolev and Besov spaces, Journal of Mathematical Fluid Mechanics, **20** (2018), 1921-1965.
- 5. Hsiao, G.C., Wendland W.L., Boundary Integral Equations, Springer-Verlag, Heidelberg, 2008.
- 6. McLean, W., *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, Cambridge, UK, 2000.
- 7. Sayas, F-J., Brown, T.S., Hassell, M.E., Variational Techniques for Elliptic Partial Differential

Equations: Theoretical Tools and Advanced Applications, CRC Press, Boca Raton, FL, 2019.

- 8. Mitrea, M. Wright, M., *Boundary value problems for the Stokes system in arbitrary Lipschitz domains*, Astérisque, 344 (2012): viii+241 pp.
- 9. Mitrea, I., Mitrea, M., *Multi-Layer Potentials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains*, Lecture Notes in Mathematics, 2063. Springer, Heidelberg, 2013. x+424 pp.
- 10. Galdi, G.P., *An Introduction to the Mathematical Theory of the Navier–Stokes Equations*. Second Edition. Springer, Berlin, 2011.
- 11. Agranovich, M.S., Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains, Springer, Heidelberg, 2015.
- 12. Wloka, J. T., Rowley, B., Lawruk, B., *Boundary Value Problems for Elliptic Systems*, Cambridge University Press, Cambridge, 1995.

8.2 Seminar	Teaching methods	Remarks
Sobolev spaces. Trace theorems and Green' functions.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
2. Boundary value problems for the Laplace of The variational solution for the Dirichlet an Neumann problems.		
3. Basic theory of pseudo-differential operator R ⁿ .		
4. The construction of a parametrix for the Bri system in R ⁿ . Properties and related results.		
5. Fredholm operators.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
6. Fredholm and invertibility properties of layer potential operators for the Stokes and Brink systems in L ^p and Sobolev spaces.		
7. Well-posedness results for linear elliptic bovalue problems on Lipschitz domains in R ⁿ , data in L ^p and Sobolev spaces (I).		
8. Well-posedness results for linear elliptic bovalue problems on Lipschitz domains in R ⁿ , data in L ^p and Sobolev spaces (II).		

9. Existence and uniqueness for boundary value problems for linear elliptic systems with nonlinear boundary conditions on Lipschitz domains in R ⁿ , and data in L ^p and Sobolev spaces.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.
10. Semilinear elliptic boundary value problems on bounded Lipschitz domains with arbitrary data in L ^p and Sobolev spaces.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.
11. Boundary value problems for nonlinear elliptic systems on Lipschitz domains in R ⁿ , with nonlinear boundary conditions. Existence results in various function spaces.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.
12. Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems with variable coefficients in Lipschitz domains in R ⁿ (n=2,3).	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.

Bibliography

- 1. Kohr., M., Pop, I., *Viscous Incompressible Flow for Low Reynolds Numbers*, WIT Press (Wessex Institute of Technology Press), Southampton (UK) Boston, 2004.
- 2. Kohr, M., *Modern Problems in Viscous Fluid Mechanics*, Cluj University Press, Cluj-Napoca, 2 vols. 2000 (in Romanian).
- 3. Hsiao, G.C., Wendland W.L., Boundary Integral Equations, Springer-Verlag, Heidelberg, 2008.
- 4. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., *Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains*, Potential Analysis, **38** (2013), 1123-1171.
- 5. Kohr, M., Lanza de Cristoforis, M., Mikhailov S.E., Wendland, W.L., *Integral potential method for a transmission problem with Lipschitz interface in* **R**³ *for the Stokes and Darcy-Forchheimer-Brinkman PDE systems*, Zeitschrift für Angewandte Mathematik und Physik, **67**:116, no. 5, 1-30, 2016.
- 6. Kohr, M., Wendland, W.L., *Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds*, Calculus of Variations and Partial Differential Equations, **57**:165 (2018), 1-41.
- 7. Kohr, M., Wendland, W.L., Boundary value problems for the Brinkman system with L^{∞} coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, Journal de Mathématiques Pures et Appliquées, **131** (2019), 17-63.
- 8. McLean, W., *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, Cambridge, UK, 2000.
- 9. Mitrea, M. Wright, M., Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque, 344 (2012): viii+241 pp.
- 10. Agranovich, M.S., Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains, Springer, Heidelberg, 2015.
- 11. Medková, D., *The Laplace Equation. Boundary Value Problems on Bounded and Unbounded Lipschitz Domains, Springer, Cham, Switzerland, 2018.*
- 12. Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub. Program, Boston, 1985.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the advanced mathematics plays an essential role. This discipline is useful in specifical PhD research activities, in preparing future researchers in pure and applied mathematics, and for those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results.	Written exam.	60%
	Ability to justify by proofs theoretical results.		
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course in the analysis of elliptic boundary value problems.	Evaluation of reports and homework during the semester, and active participation in the seminar activity.	15%
		A midterm written test.	25%
10.6 Minimum performance standards			
➤ The final grade should be at least 5 (from a scale of 1 to 10).			

Date Signature of course coordinator Signature of seminar coordinator

29.04.2020 Professor PhD Mirela KOHR Professor PhD Mirela KOHR

Date of approval Signature of the head of department

Professor PhD Octavian AGRATINI