SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Applied Functional Analysis (Analiză funcțională					
(ro)		aplicată)					
2.2 Course coordina	linator Conf. dr. Brigitte Breckner						
2.3 Seminar coordin	nator		Conf. dr. Brigitte Breckner				
2.4. Year of study	f study 2 2.5 Semester		3	2.6. Type of evaluation	VP	2.7 Type of discipline	О
2.8 Code of the discipline MME3005			'		1		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3 Of which: 3.2 course 2 3.3		3.3	1		
					seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	course	28	3.6	14
					seminar/laboratory	
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes					32	
Additional documentation (in libraries, on electronic platforms, field documentation)					23	
Preparation for seminars/labs, homework, papers, portfolios and essays					32	
Tutorship					21	
Evaluations				8		
Other activities:				17		
2.7 T-4-1 in E-i I1 -4-1 -4-1 122					1	

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 linear algebra; general topology; mathematical analysis; the
	attendance of the functional analysis course from the bachelor
	level is NOT necessary
4.2. competencies	abstract and logical thinking

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies •	C1.1 To identify the appropriate notions, to describe the speficic topic and to use an appropriate language. C1.3 To apply correctly basic methods and principles in order to solve mathematical problems.
Transversal competencies	CT1 To apply efficient and rigorous working rules, to manifest responsible attitudes towards the scientific and didactic fields, respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Presentation of the spectral theory of operators on Banach spaces, resp., on Hilbert spaces
	Presentation of various applications of the spectral theory of operators
7.2 Specific objective of the	Acquirement of knowledge specific to higher functional analysis
discipline	To become familiar with the abstract thinking and the
	problematization specific to functional analysis

8. Content

8.1 Course	Teaching methods	Remarks
1. Normed spaces (definition; properties; Banach	Lecture with	
spaces; inner product spaces; Hilbert spaces;	mathematical proofs,	
examples)	problematization,	
• /	discussion	
2. Linear continuous operators between normed	Lecture with	
spaces (characterizations of the continuity of	mathematical proofs,	
linear operators between normed spaces; the	problematization,	
normed space of linear continuous operators	discussion	
between normed spaces)		
3. Linear continuous operators between normed	Lecture with	
spaces (the open mapping theorem; the	mathematical proofs,	
bounded inverse theorem; the closed graph	problematization,	
theorem)	discussion	
4. Linear continuous functionals on normed	Lecture with	
spaces (characterizations of the continuity of	mathematical proofs,	

linear functionals; the dual of a normed space;	problematization,
the dual of a Hilber space). Reflexive normed	discussion
spaces	
5. Spectral theory of operators on Banach spaces	Lecture with
(closed operators; the resolvent set, the	mathematical proofs,
resolvent, the spectrum, the point spectrum, the	problematization,
approximative point spectrum, the continuous	discussion
spectrum, and the residual spectrum of an	
operator)	
6. Spectral theory of operators on Banach spaces	Lecture with
(the adjoint of a vector subspace of the product	mathematical proofs,
of two normed spaces; the adjoint of a linear	problematization,
densely defined operator)	discussion
7. Spectral theory of operators on Banach spaces	Lecture with
	mathematical proofs,
(relationships between a linear densely defined	problematization,
operator and its adjoint; properties of the	discussion
resolvent set and of the spectrum of adjoint	uiscussioii
operators)	La atoma ordala
8. Spectral theory of operators on Banach spaces	Lecture with
(compact operators; characterizations and	mathematical proofs,
properties of compact operators)	problematization,
0.0.4.14.0.4.0.1	discussion
9. Spectral theory of operators on Banach spaces	Lecture with
(the Riesz-Schauder theorem for compact	mathematical proofs,
operators, the spectral theorem for compact	problematization,
operators)	discussion
10. Spectral theory of operators on Hilbert spaces	Lecture with
(the adjoint operator of a linear continuous	mathematical proofs,
operator between Hilbert spaces; properties of	problematization,
the adjoint operator; unitary, selfadjoint,	discussion
normal, and symmetric operators)	
11. Spectral theory of operators on Hilbert spaces	Lecture with
(the Hellinger-Toeplitz theorem; spectral	mathematical proofs,
properties of normal operators; spectral	problematization,
properties of selfadjoint operators)	discussion
12. Spectral theory of operators on Hilbert spaces	Lecture with
(the spectral theorem for compact, selfadjoint	mathematical proofs,
operators; the spectral theorem for compact,	problematization,
normal operators)	discussion
13. Banach algebras (definition; the resolvent set,	Lecture with
the spectrum, and the resolvent of an element;	mathematical proofs,
properties of the resolvent; ideals and maximal	problematization,
ideals in Banach algebras; characters)	discussion
14. Banach algebras (the Gelfand space of a	Lecture with
Banach algebra; the theorem of Gelfand-	mathematical proofs,
Mazur; the Gelfand transform)	problematization,
,	discussion
Bibliography	

Bibliography

- 1. BRECKNER W. W.: Analiză funcțională, Presa Universitară Clujeană, Cluj-Napoca, 2009.
- 2. BREZIS H.: Analiză funcțională. Teorie și aplicații, Ed. Academiei Române, București, 2002.

- 3. DUNFORD N. And SCHWARTZ J. T.: Linear Operators. Part 1: General theory, Interscience Publishers, New York, 1958.
- 4. DUNFORD N. And SCHWARTZ J. T.: Linear Operators. Part 2: Spectral theory, Interscience Publishers, New York, 1963.
- 5. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage, B. G. Teubner, Stuttgart, 1992.
- 6. WERNER D.: Funktionalanalysis, Vierte, überarbeitete Auflage., Springer-Verlag, Berlin Heidelberg New York, 2002.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. From the oscillating swing to Fourier series	Problematization,	
	discussion, team	
	work	
2. Examples of operators (integral,	Problematization,	
differentiation, interpolation, approximation,	discussion, team	
from quantum mechanics)	work	
3. Applications of the results presented in the	Problematization,	
third lecture (initial value problems for linear	discussion, team	
differential equations; approximate solutions of	work	
operator equations)		
4. Examples/Counterexamples for reflexive	Problematization,	
normed spaces	discussion, team	
	work	
5. The spectral radius of an operator.	Problematization,	
Determination of the resolvent set, the	discussion, team	
spectrum, the approximative point spectrum,	work	
the continuous spectrum, and the residual		
spectrum of concrete operators		
6. Determination of the resolvent set, the	Problematization,	
spectrum, the approximative point spectrum,	discussion, team	
the continuous spectrum, and the residual	work	
spectrum of concrete operators		
7. A characterization of adjoint operators.	Problematization,	
Examples	discussion, team	
	work	
8. Examples of compact operators	Problematization,	
	discussion, team	
	work	
9. Applications of the spectral theorem for	Problematization,	
compact operators (the Sturm-Liouville	discussion, team	
eigenvalue problem)	work	
10. Unitary, selfadjoint, normal, and symmetric	Problematization,	
operators on Hilbert spaces (examples;	discussion, team	
properties)	work	
11. Unitary, selfadjoint, normal, and symmetric	Problematization,	
operators on Hilbert spaces (examples;	discussion, team	
properties)	work	
12. Applications of the spectral theorems	Problematization,	
presented in the lecture (the square root of a	discussion, team	
positive operator)	work	

13. Banach algebras (examples)	Problematization, discussion, team work
14. Banach algebras (the Gelfand space of	Problematization,
concrete Banach algebras)	discussion, team
	work

Bibliography

- 1. BREZIS H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
- 2. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage. B. G. Teubner, Stuttgart, 1992.
- 3. WERNER D.: Funktionalanalysis. Vierte, überarbeitete Auflage, Springer-Verlag, Berlin Heidelberg New York, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Functional analysis is one of the most important branches of mathematics, having applications in various domains (numerical analysis, approximation theory, optimization, PDEs, probability theory, mathematical and theoretical physics). This discipline both provides the theoretical background for such applications and gives samples of them.

10 Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Midterm written test	45%
	Ability to perform proofs	Final written test	45%
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the lecture	Own contributions to the exercise classes	10%
	There are valid the official rules of the faculty concerning the attendance of students to teaching		
	activities.		
10.6 Minimum performanc Basic knowledge on the tor	e standards		

Date Signature of course coordinator Signature of seminar coordinator

22.04.2020 Conf. univ. dr. Brigitte E. Breckner Conf. univ. dr. Brigitte E. Breckner

Date of approval Signature of the head of department

4.05.2020 Prof. univ. dr. Agratini Octavian