SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software engineering
Qualification	

2. Information regarding the discipline

2.1 Name of th	Tame of the discipline Software design							
2.2 Course coordinator				Prof.PhD. Bazil Parv				
2.3 Seminar coordinator				Prof.PhD. Bazil Parv				
2.4. Year of	1	2.5	2	2.6. Ty	pe of	E	2.7 Type of	elective
study		Semester		evaluat	ion		discipline	
2.8 Code of the discipline MME				8065				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/lab	1s+1pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/lab	28
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					28
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship				14	
Evaluations					14
Other activities:					-

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of programming	
	Object-oriented programming	
	 Programming paradigms 	
4.2. competencies	Average programming skills	

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	Computers, Internet access, UML tool
activities	

6. Specific competencies acquired

	_	competencies acquired
		 Understanding of the software design from the engineering perspective;
	es	Understanding of the software design concepts and principles
5	nc Suc	 Understanding of the software design process and its activities;
000	ete	Proficient use of tools and languages specific to software systems development
Professional	competencies	Knowing the specifics of main architectural and design patterns and how to apply them
۵	3	to specific projects.
	S	Professional communication skills; concise and precise description, both oral and
[63	cies	Professional communication skills; concise and precise description, both oral and written, of professional results,
versal	tencies	
nevereal	petencies	written, of professional results,
Transversal	competencies	written, of professional results, • Independent and team work capabilities; able to fulfill different roles

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of software design. Be able to apply the appropriate architectural and design patterns to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students know the main concepts and principles of software design have a good understanding of the following terms: software architecture definition(s), architectural styles and models, architecture definition language(s); detailed design; design pattern, construction design; learn the importance of architectural and detailed design and how to use tools for these tasks; know several software system types (taken from real-world applications) and the best recommended architectural styles and design
	 language(s); detailed design; design pattern, construction design; learn the importance of architectural and detailed design and how to use tools for these tasks; know several software system types (taken from real-world

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to software engineering design. Motivation and general design concepts. Overview of the software engineering design. Functional and non-functional requirements. Quality attributes. Constraints	• Convergation	
2. Software design process. Main phases: architectural design, detailed design, construction design, data design, UI design. Inputs and deliverables	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. <i>Software architecture 1</i> . Definitions. Principles. Fundamentals of requirements engineering. Designin the software architecture	 Interactive exposure Explanation Conversation Didactical demonstration 	
4. Software architecture 2. Architectural styles and patterns - overview and history. Architectural pattern for data-centered systems	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. <i>Software architecture 3</i> . Architectural patterns for data-flow systems	Interactive exposureExplanationConversation	

	Didactical demonstration
6. Software architecture 4. Architectural patterns for distributed systems	 Interactive exposure Explanation Conversation Didactical demonstration
7. Software architecture 5. Architectural patterns for interactive and hierarchical systems	 Interactive exposure Explanation Conversation Didactical demonstration
8. Detailed design 1. Overview of the detailed design. Structural and behavioral design of components. Design principles	 Interactive exposure Explanation Conversation Didactical demonstration
9. <i>Detailed design 2</i> . Creational design patterns: Abstract Factory, Factory Method, Builder, Prototype, Singleton.	 Interactive exposure Explanation Conversation Didactical demonstration
10. <i>Detailed design 3</i> . Structural design patterns: Adapter, Bridge, Composite, Façade	 Interactive exposure Explanation Conversation Didactical demonstration
11. <i>Detailed design 4</i> . Behavioral design patterns: Iterator, Observer, Strategy, Template Method	 Interactive exposure Explanation Conversation Didactical demonstration
12. Construction design. Flow-, state-, and table-based construction design. Programming design language, styles, and quality evolution.	 Interactive exposure Explanation Conversation Didactical demonstration
13. <i>Design evolution 1</i> . Architecture refactoring. Detailed design refactoring	 Interactive exposure Explanation Conversation Didactical demonstration
14. Design evolution 2. Construction design refactoring	Interactive exposureConversation

Bibliography

- 1. BASS, L., CLEMENTS, P., KAZMAN R.: Software Architecture in Practice, 2nd ed., Addison-Wesley, 2003
- 2. FOWLER, MARTIN: Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999
- 3. KRUCHTEN, PH.: *Architectural Blueprints The 4+1 View Model of Software Architecture*, IEEE Software 12 (6), 1995, pp. 42-50.
- 4. MARTIN, ROBERT CECIL: *Agile software development: principles, patterns, and practices*, Pearson Education, 2002
- 5. McCONNELL, STEVE: Code Complete, 2nd ed., Microsoft Press, 2004
- 6. OTERO, C.E.: *Software Engineering Design*, CRC Press, 2012. site: http://softwareengineeringdesign.com/Default.htm
- 7. SHAW, M.: *The Coming-of-Age of Software Architecture Research*, in Proc. of the 23rd ICSE, IEEE Comp. Soc. 2001, 656, [http://www.cs.cmu.edu/afs/cs.cmu.edu/project/vit/ ftp/pdf/shaw-keynote-rev.pdf]
- 8. SHAW, M., GARLAN, D.: Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administrivia	Presentations	Seminar is
2. Establishing the target application. First	Conversation, debate, case	organized as a
miniproject started	studies, examples	total of 14

3. Work on miniproject 1	Exposure, debate, case	hours – 2 hours
	studies, examples	every other
4. Miniproject 1 due. Second miniproject started	Exposure, debate, case	week
	studies, examples	
5. Work on miniproject 2	Exposure, debate, case	
	studies, examples	
6. Miniproject 2 due. Detailed design issues	Exposure, debate, case	
	studies, examples	
7. Final review and project evaluation	Exposure, live demos	

Bibliography

Students will serch and use software design documentation

- on the department server (win/labor/Romana/master/SED)
- on the web, using main CS databases

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies:
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

10121011011		1		
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the	
		methods	grade (%)	
10.4 Course	 knowing the basic concepts of software design applying different architectural styles and design patterns to different problem domains 	Written exam	40%	
10.5 Seminar/lab activities	 be able to study and review literature regarding software design be able to solve a problem using different architectural and design patterns be able to evaluate a software design 	 Miniproject 1 work Miniproject 2 work Seminar/lab attendance Default 	20% 20% 10%	
10.6 Minimum performance standards				
 At least grade 5 (from a scale of 1 to 10) at written exam and each miniproject work. 				

Date	Signature of course coordinator	Signature of seminar coordinator
April 19, 2018	Prof.PhD. Bazil PARV	Prof.PhD. Bazil PARV
Date of approval		Signature of the head of department
		Prof.PhD. Anca ANDREICA