SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Software Engineering

2. Information regarding the discipline

2.1 Name of the discipline	Scientific Data Visualization (MME8059)		
2.2 Course coordinator Lecturer Professor PhD. Prejmerean Vasile			
2.3 Seminar coordinator Lecturer Professor PhD. Prejmerean Vasile			
2.4. Year of study 1 2.5 Sem	ester 2 2.6. Type of evaluation E 2.7 Type of discipline Compulse	ory	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1sem
					+1pr.
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes			28		
Additional documentation (in libraries, on electronic platforms, field documentation)			28		
Preparation for seminars/labs, homework, papers, portfolios and essays			28		
Tutorship			14		
Evaluations				21	
Other activities:					
3 7 Total individual study hours		110			I

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•	Ability to work with an integrated development environment
4.2. competencies	•	Average programming skills in a visual programming language

5. Conditions (if necessary)

5.1. for the course	An LCD projector
5.2. for the seminar /lab activities	• Laboratory with twelve computers; high level programming
	language environment

6. Specific competencies acquired

sional encies	 Ability to apply knowledge of computing and mathematics appropriate to the discipline; Ability to analyze a problem, and identify and define the computing requirements appropriate to its solution;
Professional competencie	• Ability to identify and to specify computing requirements of an application and to design, implement, evaluate, and justify computational solutions;
P CC	• Ability to use current techniques and skills to integrate available theory and tools necessary for applied computing practices.
versal tencies	• Ability to apply mathematical foundations, algorithmic principles, and computer science theory;
vers ten	• Ability to apply design and development principles in the construction of software systems;
6 0	• Ability to acquire knowledge properly in an application domain in the modeling and design;
Trans comp	• Ability to work effectively in a team.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to apply theories, principles and concepts with technologies to design, develop, and verify computational solutions; Be able to use data visualization (technique tool used to help researchers understand and/or interpret data)
7.2 Specific objective of the discipline	 To assimilate data visualization techniques and the visualization as a method of studying the real phenomenon. To gain skils related to problem solving through visualization of data. To teach the students the concepts used in the field of modeling and visualization of simulation and to acquire the methods for validation of simulation using <i>Scientific Data Visualization</i>. After promotion the students should be able to use data visualization as a method of solving real problems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Scientific Data	Expositions: description,	
- data-formats used in science or engineering referred	explanation, class lectures,	
as scientific data;	Use of problems: use of problem	
- scientific data as massive and digital data with a	questions, problems and problem	
variety of data formats - floating-point data, integer	situations.	
data, image data, and clip data;	Other methods: company	
- format and data dimensions (1-D, 2-D, 3-D,)	examples.	
2. Data Visualization	Expositions: description,	
- technique tool used to help researchers understand	explanation, dialog-based lectures,	
or interpret data;	current lectures,	
- similar techniques used in other visualization;	Use of problems: problems and	
- data analysis methods and techniques.	problem situations.	
3. Visualization Techniques	Expositions: description,	
- plotting (data analysis), mapping (graphics)	explanation, class lectures, dialog-	
- color image interpreting (image processing)	based lectures, current lectures.	
- volume rendering (volume visualization)	Other methods: case study;	
- graphics (Glut, OpenGL,), animation	company examples, discussion of	
- virtual reality (CaveLib, openGL,)	material.	
- internet, database and data management		

	T	
4. Data Visualization Tools	Expositions: description,	
- Data Visualization Software;	explanation, class lectures.	
- Basic TecPlot guide.		
5. Current issues in scientific visualization	Expositions: description,	
- scientific visualization models;	explanation, class lectures,	
- validation visualization;	dialog-based lectures, lectures.	
- design for scientific visualization.		
	Expositions: description,	
6. Data modeling	explanation, class lectures,	
- data representation;	dialog-based lectures, lectures.	
- modeling volumes;	-	
- unevenly distributed data modeling;	Use of problems: use of problem	
- modeling by triangulation.	questions	
7. Visual interactive simulation	Expositions: description,	
- what is simulation, when to use simulation, types of	explanation, introductive	
modeling and simulation, advantages of simulation,	lectures,	
the steps of a simulation study.	Other methods: case study;	
- visualization techniques for validation.	company examples.	
8. Visual interactive modeling and problem solving	Expositions: description,	
- visual interactive models	explanation, class lectures,	
	Use of problems: use of problem	
- sensitivity analysis, calibration, input-output data	questions.	
analysis for simulations	1	
9. Techniques needed for data visualization	Expositions: description,	
- applications of visualization;	explanation, dialog-based	
- data analysis and visualization;	lectures, current lectures,	
- visualizing multidimensional data;	Use of problems: problems and	
- data visualization unevenly distributed.	problem situations.	
10. Creative visualization		
- constructing isosurfaces, direct volume rendering,		
streamlines, streaklines, and pathlines, table,		
matrix, charts (pie chart, bar chart, histogram,	Expositions: description,	
function graph, scatter plot, etc.), graphs (tree	explanation, class lectures,	
diagram, network diagram, flowchart, existential	dialog-based lectures, current	
graph, etc.), maps.	-	
- parallel coordinates - a visualization technique	lectures.	
	Other methods: case study;	
aimed at multidimensional data, treemap - a	company examples, discussion	
visualization technique aimed at hierarchical data,	of material.	
Venn diagram, Timeline, Euler diagram, Chernoff		
face, Hyperbolic trees, brushing and linking,		
Cluster diagram or dendrogram, Ordinogram		
11. Interactive simulation and visualization applications	Expositions: description,	
- Automatic 3-D animation and visualization	explanation, class lectures,	
- Automatic 3-D animation and visualization - Interactive 3-D Model Construction	dialog-based lectures, current	
	lectures.	
- Surgical Simulation	Use of problems: use of	
- 3D MRI Aquisition and Visualization	problem questions, problems	
- Virtual Morphological Modelling	and problem situations.	
12 Data visualization in Rusinges Analytics (visual		
12. Data visualization in Business Analytics (visual	Expositions: description,	
technologiies, and data visualization).	explanation, class lectures.	
- visual analysis, scorecards, dshboards, 3D virtual	Use of problems: use of	
reality.	problem questions.	

13. Visual data analysis - Development tools,	Expositions: description,
components, and libraries	explanation
 Manipulate and visualize datasets, toolkits for	Expositions: description,
image and signal processing	explanation

Bibliography

- 1. Arsham H., Systems Simulation: The Shortest Path from Learning to Applications, <u>http://www.ubmail.ubalt.edu/~harsham/simulation/sim.htm</u>
- 2. Averill M. Law and W. David Kelton, Simulation Modeling and Analysis, McGraw Hill, Third Edition (2000).
- Daniel Hennessey, Algorithms for the Visualization and Simulation of Mobile Ad Hoc and Cognitive Networks - A Thesis Submitted to the Faculty of Drexel University – by Daniel Hennessey in partial fulfillment of the requirements for the degree of Master of Science in Computer Science, June 2009, <u>http://idea.library.drexel.edu/bitstream/1860/3028/1/Hennessey_Daniel.pdf</u>
- 4. Dodescu Gh., Simularea sistemelor, Ed.Militara, Bucuresti, 1986.
- Fernando P. Birra, Manuel J. Prsospero, SiPaViS -A Toolkit for Scientific Visualization and Simulation, Computer Science Department, New University of Lisbon, P-2825 Monte Caparica, Portugal, emails: <u>fpb@di.fct.unl.pt</u>, Journal for Geometry and Graphics, Volume 3 (1999), No. 1, 47{55, <u>ps@di.fct.unl.pt</u>, <u>http://www.heldermann-verlag.de/jgg/jgg01_05/jgg0304.pdf</u>
- 6. Helmut Doleisch and Helwig Hauser, Smooth Brushing for Focus+Context, Visualization of Simulation Data in 3D, VRVis Research Center in Vienna, Austria, mailto: Doleisch, <u>Hauser@VRVis.at</u>, <u>http://www.VRVis.at/vis/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.2536&rep=rep1&t</u> <u>ype=pdf</u>
- 7. Miller A. and Allen P., Santos V., and Valero-Cuevas F., From robotic hands to human hands: a visualization and simulation engine for grasping research, http://www.cs.columbia.edu/~allen/PAPERS/industrialrobot.pdf
- 8. Popescu, G. D., Radoiu, D., Elemente de procesare digitala a informatiei, Universitatea Babes-Bolyai, Cluj Napoca, Facultatea de Fizica, 146 pag., 2000
- 9. Rădoiu, D., Popescu, G. D., Vizualizarea stiintifica a datelor experimentale, Editura Universitatii Petru Maior, 168 pag., ISBN 973-8084-05-9, 2000
- 10. Rădoiu D., Scientific Visualization; Editura "Casa Cărții de Știință", Cluj-Napoca, 150 pag., ISBN 973-686-645-9, 2004;
- 11. Rodt T., Schlesinger A., Schramm A., Diensthuber M., Rittierodt M., Krauss J.K., 3D visualization and simulation of frontoorbital advancement in metopic synostosis, <u>http://www.slicer.org/publications/item/view/1513</u>
- Rosenblum, L., R. Earnshaw, J. Encarnação, H. Hagen, A. Kaufman, S. Klimenko, G. Nielson, F. Post, D. Thalmannn, Scientific Visualization, Advances and Challenges, IEEE Computer Society Press, Academic Press, 1994
- 13. Spence, R., Information Visualization, Addison Wesley, 2001
- 14. Stephen Few, Data Visualization Past, Present, and Future, January 10, 2007. http://www.perceptualedge.com/articles/Whitepapers/Data_Visualization.pdf
- 15. VADUVA I., Modele de simulare cu calculatorul, Ed. Tehnica, Bucuresti 1977.
- 16. Win Cho Aye, Malcolm Yoke Hean Low, Huang Shell Ying, Hsu Wen Jing, Liu Fan, Zeng Min, Visualization and Simulation Tool for Automated Stowage Plan Generation System, <u>http://www.iaeng.org/publication/IMECS2010/IMECS2010_pp1013-1019.pdf</u>
- 17. PV-WAVE Visual data analysis http://www.roguewave.com/products-services/pv-wave

8.2 \$	Seminar	Teaching methods	Remarks
1. 2.	The first two seminars are dedicated to surveying information sources available on Internet and Intranet, and planning of the papers and projects.	Expositions: description, explanation, introductive lectures. Conversations: debate, dialog, introductive conversations. Other methods: individual study, exercise, homework study.	
3. 4. 5. 6. 7. 8. 9.	The next seven seminars (from three to nine) are dedicated to paper presentations.	Conversations: debate, dialog, conversations for knowledge consolidation, conversations to systematize and synthesize knowledge. Use of problems: use of problem questions, problems and problem situations. Other methods: case study; cooperation, individual study, homework study, company examples, discussion of material.	
10. 11.	 <i>PV-WAVE</i> - Visual data analysis: Development tools, components, and libraries toolkits for image and signal processing 	Conversations : debate, dialog, conversations for knowledge consolidation, conversations to systematize and synthesize knowledge.	
12. 13. 14.	The project demos will be scheduled in the last three seminars.	Conversations: debate, dialog. Discovery: discovery by documenting. Other methods: discussion of material.	

Bibliography

- Beatriz Sousa Santos, Introduction to Data and Information Visualization, Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, 2010 <u>http://www.ieeta.pt/~bss/MAPI/Introduction-to-Vis-5-10.pdf</u>
- 2. Brodlie, K., L. Carpenter, R. Earnshaw, J. Gallop, R. Hubbold, A. Mumford, C. Osland, P. Quarendon, Scientific Visualization, Techniques and Applications, Springer Verlag, 1992
- 3. Card, S., J. Mackinlay, B. Schneiderman (ed.), Readings in Information Visualization- Using Vision to Think, Morgan Kaufmann, 1999
- 4. <u>Globus, A., Raible, "Fourteen Ways to say Nothing with Scientific Visualization", Computer, July 1994,</u> <u>pp.86-88</u>
- 5. Jack P.C. Kleijnen, Five-stage procedure for the evaluation of simulation models through statistical techniques, Proceedings of the 1996 Winter Simulation Conference, p.248-254.
- Keller, P., M. Keller, "The process of Visualization", Visual Cues, IEEE Computer Society Press, 1993, pp. 38-42
- 7. Keller, P., M. Keller, Visual Cues, IEEE Computer Society Press, 1993

- 8. Kleijnen J.P.C., Sensitivity analysis and optimization, Proceed. of the 1995 Winter Simulation Conference, p.133-140, 19959.
- 9. Kleijnen J.P.C., Validation of models: statistical techniques and data availability, Proceed. of the 1999 Winter Simulation Conference, 1999.
- 10. Lichenbelt, B., R. Crane, S. Naqvi, Introduction to Volume Rendering, Prentice Hall, 1998
- Sanderson D.P., R.Sharma, R.Rozin, and S.Treu, The Hierarchical Simulation Language HSL: A Versatile Tool for Process-Oriented Simulation, ACM Trans.on Modeling and Computer Simulation, Vol.1, no.2, 1991, pp.113-153.
- Schroeder, W., K. Martin, B. Lorensen, The Visulization Toolkit- An Object Oriented Approach to 3D Graphics, 2nd ed., Prentice Hall, 1998
- 13. SCOR_2006_visualization, Data Visualization, <u>http://www.scorint.org/Project_Summit_2/SCOR_2006_visualization.pdf</u>
- 14. Shermer, M., "The Feynman-Tufte Principle", Scientific American, April 2005, pp. 38
- 15. T.I. Oren, Concepts and Criteria to Asses Acceptability of Simulation Study: a frame of reference, Comm.ACM, vol.24(1981), no.4, 180-184.
- 16. <u>Tufte, E. "Graphical Excellence", in: Visual Explanations: Images and Quantities, Evidence and Narrative, Graphics Press, 1997, pp. 13-21.</u>
- 17. <u>Tufte, E. "Graphical Integrity", in: Visual Explanations: Images and Quantities, Evidence and Narrative,</u> <u>Graphics Press, 1997, pp. 53-77</u>
- 18. <u>Tufte, E. "The Decision to Launch the Space Shuttle Challenger", in: Visual Explanations: Images and</u> <u>Quantities, Evidence and Narrative, Graphics Press, 1997, pp.39,53</u>
- 19. Tufte, E., The Visual Display of Quantitative Information, Graphics Press, 1983
- 20. Ware, C., Information Visualization: Perception to Design, Academic Press, 2000

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course exists in the curriculum of many universities in the world;
- The results of course are considered by companies of software particularly useful and topical.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	- know the basic elements and concepts of the Scientific Data Visualization;	Written exam	50%	
10.5 Seminar	- complexity, importance and degree of timeliness of the synthesis made	Paper presentation	15%	
Project	 apply the course concepts problem solving	Project presentation	35%	
10.6 Minimum performance standards				
➢ At least grade 5 at written exam, paper presentations and project realised.				

Date	Signature of course coordinator	Signature of seminar coordinator
April 22, 2018	Lect. Dr. PREJMEREAN Vasile	Lect. Dr. PREJMEREAN Vasile

Date of approval

Signature of the head of department

.....

.....