SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science/ Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Introduction to Natural Language Processing								
2.2 Course coor	2.2 Course coordinator Lecturer Ph.D. Lupea Mihaiela							
2.3 Seminar coordinator Lecturer Ph.D. Lupea Mihaiel				naiela				
2.4. Year of	3	2.5	2	2.6. Type of C 2.7 Type of optional				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 lab+
					1 pr
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6 seminar/laboratory	24
Time allotment:					hours
Learning using manual, course su	pport	, bibliography, course i	notes		30
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					10
Evaluations					
Practical project					27
3.7 Total individual study hours 127					

3.7 Total individual study hours	127
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Graphs Algorithms
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	 Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Professional competencies Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Advanced ability to approach, model and solve phenomena and problems from natural language and economy using fundamental knowledge from mathematics and computer science; Ability to approach and solve complex problems using various techniques of computational intelligence; Proficient use of methodologies and tools specific to programming languages and software systems. Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles competencies **Transversal** Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the basic principles, domains and tasks in Natural Language Processing (NLP) To understand the current state of the art in order to realize an overview of a specific domain in NLP and to implement a NLP tool.
7.2 Specific objective of the discipline	Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms and techniques to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, document summarization, anaphora resolution) in Natural Language Processing domain.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1.	Exposure: description,	
Natural Language Processing (NLP): stages, domains,	explanation, examples,	
applications.	debate, dialogue	
Course 2.	Exposure: description,	
-WordNet and RoWordNet - knowledge structure, semantic	explanation, examples,	
relations, lexical relations.	debate, dialogue	
- WordNetSimilarity tool and similarity measures for words.		
Course 3. Part of speech tagging.	Exposure: description,	
- part-of-speech tagging in English.	explanation, examples,	
- part-of-speech tagging in Romanian	debate, dialogue	
Course 4. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level construction;	explanation, examples,	
- Cocke-Kasami-Yonger (CKY) algorithm;	debate, dialogue	

Course 5. Statistical parsing	Exposure: description,
- Probabilistic Context-Free Grammars (PCFG);	explanation, examples,
- Probabilistic CKY (Cocke-Kasami-Yonger) parsing of	debate, dialogue
PCFGs.	
Course 6. Hidden Markov Model	Exposure: description,
- Markov chains, Hidden Markov Model(HMM);	explanation, examples,
- three canonical problems associated with HMM	debate, dialogue
- the forward algorithm; Viterbi algorithm.	
Course 7. Word Sense Disambiguation	Exposure: description,
- dictionary and graph-based approaches.	explanation, examples,
7 6 1	debate, dialogue
Course 8. Document summarization	Exposure: description,
- approaches based on clustering, graphs.	explanation, examples,
	debate, dialogue
Course 9. Anaphora resolution	Exposure: description,
- Lapin and Lease algorithm	explanation, examples,
- Mitkov's algorithm	debate, dialogue
Course 10. Sentiment analysis	Exposure: description,
- opinion mining in social media	explanation, examples,
- emotion analysis in literature	debate, dialogue
Course 11. Textual entailment	Exposure: description,
	explanation, examples,
	debate, dialogue
Course 12. Written exam	Exposure: description,
	explanation, examples,
	debate, dialogue

Bibliography

- 1. J.ALLEN: Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University, 1994.
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.
- 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Working with WordNet, Romanian WordNet and	Explanation,	The seminar/lab is
WordNetSimilarity.	dialogue, case studies	structured as 2 hours
		classes every second week
2. Working with dedicated parsers and taggers	Explanation,	
(Stanford, CST tools, Racai tools)	dialogue, case studies	
3. Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate	
4. Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate	

5.	Working with dedicated tools for summarization,	Explanation,	
	anaphora, co-reference resolution, sentiment	dialogue, case studies	
	analysis.		
6.	Students' presentations of the practical projects.	Dialogue, debate	

Bibliography

- 1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html
- 2. Resurse lingvistice in limba romana: www.racai.ro

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation

Date

			1		
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the		
		methods	grade (%)		
10.4 Course	- know the theoretical concepts of	Written exam	25%		
	the domain;				
10.5 Seminar/lab	- know to write an overview of a	Presentation of a NLP	35%		
activities	specific domain	domain and a			
		corresponding tool.			
	- be able to implement course	Practical project -	40%		
	algorithms	implementation of a			
		NLP tool based on the			
		studied methods.			
		Teams of 2-3 students			
10.6 Minimum performance standards					
➤ The final grade to be at least 5 (from a scale of 1 to 10).					

29.04.2020	Lecturer Ph.D. Lupea Mihaiela	Lecturer Ph.D. Lupea Mihaiela
Date of approval		Signature of the head of department
		Lecturer Ph.D. Sterca Adrian

Signature of seminar coordinator

Signature of course coordinator