SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Computer vision and deep learning					
(ro)			Viziune computerizată și deep learning				
2.2 Course coordinator			Lect. PhD. Diana Laura Borza				
2.3 Seminar coordinator		Lect. PhD. Diana Laura Borza					
2.4. Year of study	3	2.5 Semester	5	2.6. Type of	E	2.7 Type of	Optional
			evaluation discipline				
2.8 Code of the MLE5152							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 lab/
				seminar/laboratory	proj
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				14	
Additional documentation (in libraries, on electronic platforms, field documentation)				16	
Preparation for seminars/labs, homework, papers, portfolios and essays				20	
Tutorship				4	
Evaluations				4	
Other activities:					
		= 0			

3.7 Total individual study hours	58
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

<u> </u>	
4.1. curriculum	Linear Algebra
	Python programming
	• Statistics
	 Data structures and algorithms
4.2. competencies	Average programming skills in a high-level programming
	language

5. Conditions (if necessary)

5.1. for the course	 Classroom with blackboard and video projector.
5.2. for the seminar /lab	 Laboratory equipped with high-performance computers and having
activities	python installed.

6. Specific competencies acquired

0. Specin	nc competencies acquired
	CE1.3 Using the methods, techniques and algorithms from AI in order to model several
	classes of problems
nal	CE1.4 Identify and explain specific AI techniques and algorithms and using them to solve
sion	specific problems
Professional competencies	CE1.5 Integrating the models and the specific solutions from AI in dedicated applications
Prc 30m	C4.2 Interpretation of mathematical models and computer science (formal)
	C4.3 Identifying appropriate models and methods to solve real problems
	C4.5 Incorporation of formal models in specific applications in various fields
	CT1 Ability to conform to the requirements of organized and efficient work, to develop a
	responsible approach towards the academic and scientific fields, in order to make the most of
v ₂	one's own creative potential, while obeying the rules and principles of professional ethic
sal	
er E	CT3 Using efficient methods and techniques for learning, information, research and
nsv	developing capabilities for using knowledge, for adapting to a dynamic society and for
Transversal competencies	communicating in Romanian and in a worldwide spoken language.
C	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• The goal of this course is to acquaint the students with the field of
discipline	computer vision from a deep learning perspective. The students will
	learn how to analyse, design, implement, and evaluate any complex
	computer vision problem. The course covers both image and video
	processing, including image classification, object detection, object
	tracking, action recognition, image stylization and synthetic data
	generation.

7.2 Specific objective of the discipline

- Understand various architectures of Convolutional Neural Networks for image classification, object detection, video analysis, and synthetic visual data generation.
- Solve and analyse a Computer Vision problem using a specific theoretical apparatus.
- Understand and develop efficient fine-tuning strategies for increasing the performance of Convolutional Neural Networks with applications in the Computer Vision field.
- Understand the metrics used to evaluate complex networks, as well as visualizing the features learned by the networks.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Computer Vision . Overview,	• Interactive exposure	
history of computer vision, the three Rs of	• Explanation	
computer vision.	• Conversation	
	Didactical	
	demonstration	
2. Image classification pipeline . Image	• Interactive exposure	
classification pipeline, image features, filters,	• Explanation	
convolutions, linear classifiers.	• Conversation	
	Didactical	
	demonstration	
3. Shallow neural networks. Optimization and	• Interactive exposure	
loss functions.	• Explanation	
	• Conversation	
	Didactical	
	demonstration	
4. Introduction to convolutional neural	• Interactive exposure	
networks . Convolutional neural networks	• Explanation	
architectures. Elements of a convolutional	• Conversation	
convolutional neural network: convolutional	Didactical	
layers, pooling layers, fully connected layer).	demonstration	
Architectures: LeNet, AlexNet, VGG,		
Inception, Resnet.		
5. Training a neural network . Activation	• Interactive exposure	
functions, weight initialization, hyperparameter	• Explanation	
tuning, transfer learning.	• Conversation	
	Didactical	
	demonstration	
6. Case study: face analysis using convolutional	• Interactive exposure	
neural networks. Multitask networks, triplet	Explanation	
loss function.	• Conversation	
	Didactical	
	demonstration	
7. Image segmentation using convolutional	• Interactive exposure	
neural networks. Transposed convolutions,	• Explanation	
Fully convolutional neural networks, U-Net	• Conversation	
architecture.	• Didactical	
	demonstration	

8. Generative networks. PixelRNN and	Interactive exposure
PixelCNN, Variational Autoencoders (VAE),	Explanation
Generative Adversarial Networks (GAN).	Conversation
	Didactical
	demonstration
9. Case study: face generation using deep	Interactive exposure
learning. AttGAN, StyleGAN.	Explanation
	• Conversation
	Didactical
	demonstration
10. Visualization and understanding. Feature	Interactive exposure
visualization, Feature inversion, DeepDream,	Explanation
Adversarial examples, Style transfer.	• Conversation
	Didactical
	demonstration
11. Object detection . Object detection, region	Interactive exposure
proposal, ROI pooling. Convolutional neural	Explanation
networks for object detection: Fast R-CNN,	• Conversation
Faster R-CNN, Mask-RCNN, YOLO, SSD	Didactical
	demonstration
12. Sequence models . 3D convolutional neural	Interactive exposure
networks. Recurrent neural networks (RNN,	Explanation
LSTM, GRU).	Conversation
	Didactical
	demonstration
13. Case study: micro-expression detection and	Interactive exposure
recognition using convolutional neural	Explanation
networks.	Conversation
	Didactical
	demonstration
14. Deep reinforcement learning . Policy	Interactive exposure
gradients, hard attention, Q-Learning, Actor-	Explanation
Critic.	Conversation
	Didactical
	demonstration

Bibliography

- 1. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.
- 2. Langr, Jakub, and Vladimir Bok. GANs in Action. (2018).
- 3. Trask, Andrew. *Grokking deep learning*. Manning Publications Co., 2019.
- 4. Prince, Simon JD. Computer vision: models, learning, and inference. Cambridge University Press, 2012.
- 6. Shapiro, Linda G., and George C. Stockman. Computer vision. Prentice Hall, 2001.
- 7. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists.* "O'Reilly Media, Inc.", 2016.
- 8. Gulli, Antonio, and Sujit Pal. *Deep learning with Keras*. Packt Publishing Ltd, 2017.

8.2 Laboratory	Teaching methods	Remarks
1. Strategies for solving computer vision	• Interactive exposure	The laboratory is
problems. Introduction to <i>python</i> and <i>keras</i> .	• Explanation	structured as 2 hours per
	• Conversation	week, every other week
	Individual and	
	group work	
	• Dialogue, debate	

	· · · · · · · · · · · · · · · · · · ·
2. Convolutional neural networks (building	• Interactive exposure
blocks, simple architectures).	• Explanation
	• Conversation
	• Individual and
	group work
	Dialogue, debate
3. Optimization algorithms, unbalanced data, data	• Interactive exposure
pre-processing, data generators in <i>keras</i> .	• Explanation
	• Conversation
	Individual and
	group work
	• Dialogue, debate
4. Improving a model's performance –	• Interactive exposure
hyperparameters tuning.	• Explanation
nyperparameters tuning.	• Conversation
	• Individual and
	group work
	• Dialogue, debate
5. Evaluation metrics and visualization	Interactive exposure
(Precision, Recall, TPR, FPS, F1-Score,	• Explanation
confusion matrix, activation maps).	• Conversation
confusion matrix, activation maps).	• Individual and
	group work • Dialogue, debate
6 Object detection using deem learning (bands	
6. Object detection using deep learning. (hands-	• Interactive exposure
on YOLO implementation - NMS, metrics for	ExplanationConversation
object detection)	Individual and
	group work
7. 0	• Dialogue, debate
7. Generative networks.	• Interactive exposure
	• Explanation
	• Conversation
	Individual and
	group work
	Dialogue, debate
Project	·
Phase 1 (week 1 and 2)	• Interactive exposure
- each student should pick (or propose) a computer	• Explanation
vision problem for the project	• Conversation
- discussion about the chosen projects	• Individual and
- state of the art analysis (search for other methods that	group work
solve the same problem)	Brainstorming
- short presentation (by the teacher) of the possible	
computer vision project themes that could be solved	
using deep learning	
Phase 2 (week 3 and 4)	
- presentation (by the teacher) of the methodology that	
needs to be followed for the project and of the	
available tools to achieve the project	
project in the project	<u>l</u>

Phase 3 (week 5 and 6)

- establishing the methodology that needs to be followed to solve the project
- data gathering, data pre-processing
- selection of the appropriate network architectures

Phase 4 (week 7 and 8)

- design and implementation of the project

Phase 5 (week 9 and 10)

- design and implementation of the project
- evaluation metrics implementation
- visualization

Phase 6 (week 11 and 12)

- implementation cont'd, evaluation, fine-tuning

Phase 7 (week 13 and 14)

- project delivery, presentation, demo

Bibliography

- 1. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists*. "O'Reilly Media, Inc.", 2016.
- 2. Gulli, Antonio, and Sujit Pal. *Deep learning with Keras*. Packt Publishing Ltd, 2017.
- 3. Anderson, John. *Hands On Machine Learning with Python*. CreateSpace Independent Publishing Platform, 2018.
- 4. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors.
- The course exists in the studying program of all major universities in Romania and abroad.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 The student has a good understanding of the deep learning concepts. The ability to apply the course concepts in solving a real-life computer vision problem. 	Written examination	40%
10.5 Seminar/lab activities	• The correct	Continuous observations	60%

specification, designed implementation a evaluation of computer visities problem based deep learning.	a on
• The student is able apply different techniques	ent for he
deep learning system	

10.6 Minimum performance standards

- Students must prove that they acquired an acceptable level of knowledge and understanding of the core concepts taught in the class, that they are capable of using this knowledge in a coherent form, that they have the ability to establish certain connections and to use the knowledge in solving various computer vision problems.
- The final grade (average between written exam and project) should be at least 5 (no rounding)

Date	Signature of course coordinator	Signature of seminar coordinator	
30.04.2020	Lect. PhD. Diana Laura Borza	Lect. PhD. Diana Laura Borza	
Date of approval	Signature of	Signature of the head of department	