syllabus

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)		Pri	Principles of Performance Oriented Coding				
2.2 Course coordinator		Во	Boris Vleju, PhD				
2.3 Seminar coordinator		Во	Boris Vleju, PhD				
2.4. Year of study	3	2.5 Semester	5	2.6. Type of evaluation	С	2.7 Type of discipline	Optional
2.8 Code of the discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3 seminar/ laboratory	1 lab + 2 pr
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6 seminar/ laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					5
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship 4					4
Evaluations					5
Other activities:				0	
3.7 Total individual study hours 30					
3.8 Total hours per semester 100					

3.9 Number of ECTS credits	4
----------------------------	---

4. Prerequisites (if necessary)

4.1. curriculum	Object Oriented ProgrammingAdvanced Programming Methods
4.2. competencies	• Average Java programming skills

5. Conditions (if necessary)

5.1. for the course	• Projector
5.2. for the seminar /lab activities	• Laboratory with internet access and ability to use personal laptops

6. Specific competencies acquired

Professional competencies	C1.5 Development of program units and corresponding documentation
Transversal competencies	CT2 Efficient fulfillment of organized activities in an interdisciplinary group and development of empathic abilities of interpersonal communication, relationship and collaboration with various groups

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To acquire a deeper insight of Java Core Technologies
7.2 Specific objective of the discipline	 To attain an enhanced level of object oriented design principles (in Java) To get a good grasp of Concurrent Programming in Java To be a solid base for preparing to become a Java certified programmer

8. Content

8.1 Course	Teaching methods	Remarks
1. Requirements and overview	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	

2. Application and process performance	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
3. High performance collections (1)	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
4. High performance collections (2)	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
5. Lambdas – good and bad	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
 String processing and regular expressions in practice 	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
7. Java I/O performance	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
8. Profiling in practice	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
9. Concurrency in practice (1)	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
10.Concurrency in practice (2)	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
11. Concurrency in practice (3)	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	

12. Performance traps in design patterns (1)	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
13. Performance traps in design patterns (2)	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	
14.Exam	Exposition: presentation, explanations, practical examples, demonstrations, case- study discussions	

Bibliography

1. Jeanne Boyarsky, Scott Selikoff, OCA: Oracle Certified Associate Java SE 8 Programmer I Study

Guide, John Wiley & Sons, Dec 11, 2014

2. Jeanne Boyarsky, Scott Selikoff, *OCP: Oracle Certified Professional Java SE 8 Programmer II Study Guide*, John Wiley & Sons, Dec 14, 2015

3. Joshua Bloch, Effective Java (3nd Edition), Addison-Wesley Professional, 2017

4. Joshua Bloch, Neal Gafter, Java puzzlers: traps, pitfalls, and corner cases, Addison-Wesley, 2005

5. Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, Java Concurrency

in Practice, Pearson Education, May 9, 2006

8.2 Seminar / laboratory	Teaching methods	Remarks	
1. Requirements and overview. Application and process performance	Explanation, examples, dialog, case-studies	The lab is structured as 2 hours classes every second week.	
2. High performance collections – profiling in practice	Explanation, examples, dialog, case-studies		hours classes every second
3. Lambdas, Java I/O performance	Explanation, examples, dialog, case-studies		
4. Concurrency in practice (1)	Explanation, examples, dialog, case-studies		
5. Concurrency in practice (2)	Explanation, examples, dialog, case-studies		
6. Performance traps in design patterns	Explanation, examples, dialog, case-studies		
7. Exam	Explanation, examples, dialog, case-studies		

Bibliography

- 1. Jeanne Boyarsky, Scott Selikoff, OCA: Oracle Certified Associate Java SE 8 Programmer I Study
- Guide, John Wiley & Sons, Dec 11, 2014
- 2. Jeanne Boyarsky, Scott Selikoff, *OCP: Oracle Certified Professional Java SE 8 Programmer II Study Guide*, John Wiley & Sons, Dec 14, 2015
- 3. Joshua Bloch, *Effective Java (3nd Edition)*, Addison-Wesley Professional, 2017
- 4. Joshua Bloch, Neal Gafter, Java puzzlers: traps, pitfalls, and corner cases, Addison-Wesley, 2005
- 5. Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, Java Concurrency
- in Practice, Pearson Education, May 9, 2006

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies
- The course is very well appreciated by the software industry the content being set up in very close collaborations with various software companies

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	- understanding the concepts and language features presented at the course	Written exam or quizzes during the course	40%	
10.5 Seminar/lab activities	- implementing course concepts and algorithms	Lab assignments	60%	
10.6 Minimum performance standards				
At least grade 5 (1 to 10 scale) at all activities seminar/lab, written exam. The final grade must be at least 5.				

Date	Signature of course coordinator	Signature of seminar coordinator
	Boris Vleju, Phd	Boris Vleju, Phd
Date of approval	Signature of the head of department	