1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science (in English)
Qualification	

2. Information regarding the discipline

Code

		, ,		A				
2.1 Name of the discipline Test Design Techniques								
2.2 Course coordinator Lecturer PhD Camelia Chisăliță-Crețu								
2.3 Seminar coordinator				Lecturer PhD Cam	elia Cl	hisăliță-Crețu		
2.4. Year of	3	2.5	6	2.6. Type of	С	2.7 Type of	Optional	
study		Semester		evaluation		discipline		
2.8 Discipline					•	·		
C 1		MLE5110						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 lab +
				seminar/laboratory	2 project
3.4 Total hours in the curriculum	60	Of which: 3.5 course	24	3.6	36
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					10
Evaluations					15
Other activities:					-
3.7 Total individual study hours		115			

3.7 Total individual study hours	115
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	OOP, Programming Fundamentals, Advanced Programming Methods
4.2. competencies	Good programming skills in at least one of the programming languages Java, C#

5. Conditions (if necessary)

5.1. for the course	Course hall with projector
5.2. for the seminar /lab	• Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

Professional competencies	•	 C2.1 Identify adequate software systems development methodologies C1.2 Identify and explain specific test design techniques that correspond to a testing level. C1.3 Source code and goal oriented test elaboration in a well-known programming language. C4.3 Identify models and methods adequate to real life problem solving.
Transversal competencies	•	 CT1 Apply rules to organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics. CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Enhance the students understanding of testing and test design techniques. Provide the students with an environment in which they can explore the usage and usefulness of software testing and test design concepts in various business scenarios. Induce a realistic and industry driven view of software testing concepts and their inherent benefits.
7.2 Specific objective of the discipline	 Give students the ability to explore various test design techniques applied to different levels of testing. Improve the students' abilities to tackle on goal driven testing. Enhance the students understanding of test design techniques value in business. Students will be able to use various tools for the testing process (i.e., test management, test running, test reporting and bug reporting). Students will be able to design test cases according to an established testing goal and using specific test design technique in order to investigate the software.

8. Content

8.1	Course	Teaching methods	Remarks
1.	Software Testing. Test Design Techniques1.1. Software Testing. Goals. Scope1.2. Test Design Technique. Attributes1.3. Taxonomy of Test Design Techniques	 Interactive exposure Explanation. Conversation Didactical demonstration 	
2.	Coverage-based Techniques I 2.1. Focus. Objectives 2.2. Tours. Logical Expressions	 Interactive exposure Explanation. Conversation Didactical demonstration 	
3.	Coverage-based Techniques II 3.1. Specification-based Testing; 3.2. Requirements-based Testing;	 Interactive exposure Explanation. Conversation Didactical demonstration 	
4.	Tester-based Techniques I	Interactive exposure	

4.1. Focus. Objectives	• Explanation.
4.2. User Testing. Alpha Testing. Beta Testing	Conversation
	Didactical
5 Tester hand Testering H	demonstration
5. Tester-based Techniques II	Interactive exposure
5.1. Bug Bashes. Paired Testing.5.2. Coverage-based Techniques vs Tester-based	• Explanation.
Techniques	Conversation
reeminques	Didactical
(Activity haged Techniques	demonstration
6. Activity-based Techniques	Interactive exposure
6.1. Focus. Objectives6.2. Guerilla Testing. All-pairs Testing	• Explanation
6.3. Use Cases Testing. Scenario Testing	Conversation
6.4. Coverage-based Techniques vs Activity-based	Didactical
Techniques	demonstration
7. Evaluation-based Techniques	Interactive exposure
7.1. Focus. Objectives	Explanation.
7.2. Function Equivalence Testing. Self-verifying data	Conversation
	Didactical
	demonstration
8. Desired result-based Techniques	Interactive exposure
8.1. Focus. Objectives	Explanation.
8.2. Confirmation Testing. User Acceptance Testing	Conversation
8.3. Desired-based Techniques vs Evaluation-based	Didactical
Techniques	demonstration
9. Risk-based Techniques	Interactive exposure
9.1. Focus. Objectives	Explanation.
9.2. Quick-tests. History-based Testing. Usability Testing	Conversation
9.3. HTSM. Failure modes	Didactical
	demonstration
10. Test Design Techniques Analysis	Interactive exposure
10.1.Tester-based Techniques vs Activity-based Techniques	• Explanation.
10.2.Risk-based Techniques vs Coverage-based Techniques	Conversation
10.3.Desired result-based Techniques vs Risk-based	Didactical
Techniques	demonstration
11. Essay Presentations	Interactive exposure
	Conversation
12. Essay Presentations	Interactive exposure
	Conversation
Bibliography	

Education, 2010.

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009.

[You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John Wiley & Sons, 2008.

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008.

[Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008.

[Pat05] R. Patton, Software Testing, Sams Publishing, 2005.

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004.

[Brn02] I. Burnstein, Practical Software Testing, Springer, 2002.

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Perry97] W.E.Perry, R.W. Rice, Surviving theTop Ten Challenges of Software Testing – A People Oriented Approach, Dorset House Publishing, 1997.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.[Page08] A. Page, K. Johnston, B. Rollison, Microsoft, How We Test Software at Microsoft, 2008.[Whitt2012] J. Whittaker, J. Arbon J. Carollo, How Google Tests Software, Google, Pearson Education, 2012.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Laboratory 1 Testing tools and platforms. Testing Project Setup	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
2. Laboratory 2 Test Automation Tools	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
3. Laboratory 3 Coverage-based Techniques OR Tester-based Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
4. Laboratory 4 Risk-based Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
5. Laboratory 5 Activity-based Techniques OR Desired result-based Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
6. Laboratory 6 Project turn-in	Evaluation	
References: See references from Lectures.		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply test design techniques for a software product, in a similar way they are used in industry.
- Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
			U
10.4 Course	Design and develop a testing	Oral Examination	70%
	solution (project) for a		
	software product with focus on		
	test design techniques. The		
	corresponding grade is		
	denoted by P .		
10.5 Seminar/laboratory	Each lab activity will be	Laboratory Activity	30%
activities	graded. The arithmetic		
	average of the grades is		
	denoted by L .		

Remark:

- Laboratory assignments will pe achieved in groups of 2-3 students.
- Testing project will pe achieved in groups of 4-5 students.
- 10.6 Minimum performance standards
 - Students will be able to apply test design techniques according to established goals for a software

system.

- Students will be able to unstandand the differences between software testing goal, scope, and test design technique concepts.
- The final grade (M) is computed as follows: M = 30% L + 70% P.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2020	Lect. PhD. Camelia Chisăliță-Crețu,	Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Prof. PhD. Anca Andreica