SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science (in English)
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Robo				otic Process Automation (Automatizarea proceselor de business)			
2.2 Course coordinator				Lecturer PhD Camelia Chisăliță-Crețu			
2.3 Seminar coordinator				Lecturer PhD Camelia Chisăliță-Crețu			
2.4. Year of	3	2.5		2.6. Type of	C	2.7 Type of	Optional
study		Semester		evaluation		discipline	
2.8 Discipline MLE5147							
Code	NILE5147						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 lab +
				seminar/laboratory	2 project
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					5
Additional documentation (in libraries, on electronic platforms, field documentation)					5
Preparation for seminars/labs, homework, papers, portfolios and essays					5
Tutorship					5
Evaluations					10
Other activities:					-

3.7 Total individual study hours	30
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

ramming skills in at least one of the programming Tava, C#

5. Conditions (if necessary)

5.1. for the course	Course hall with projector
5.2. for the seminar /lab	Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

Professional competencies	•	C2.1 Identify adequate software systems development methodologies C4.3 Identify models and methods adequate to real life problem solving.
Transversal competencies	•	CT1 Apply rules to organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics. CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Enhance the students understanding on business process identification are automation.			
	• Provide the students with an environment in which they can explore the usage and usefulness of software development to increase efficiency in business processes.			
	 Induce a realistic and industry driven view of software development for 			
	business process automation related concepts and their inherent benefits.			
7.2 Specific objective	• Give students the ability to explore various ways to automate business			
of the discipline	processes.			
	• Improve the students' abilities to tackle on goal driven process automation.			
	• Enhance the students understanding of process automation value in business.			
	• Students will be able to use various tools, e.g., UiPath Studio, in order to provide a process automation solution.			
	• Students will be able to design and develop a business process automation			
	solution following specific requirements and real world case studies available			
	on RPA learning platforms.			

8. Content

8.1 Co	ourse	Teaching methods	Remarks
1. Re	obotic Process Automation (RPA)	 Interactive exposure 	
1.3	1. Business Process Identification	 Explanation. Conversation 	
1.2	2. Introduction to UiPath Studio	Didactical demonstration	
	1.2.1. Basics concepts		
	1.2.2. UiPath Platform Architecture		
2. Da	ata manipulation	 Interactive exposure 	
2.1	1. Variables. Data types	 Explanation. Conversation 	
2.2	2. Control flow structures	 Didactical demonstration 	
2.3	3. Scalar variables. Collections. Tables		
2.4	4. Text manipulation		
3. Us	ser Events. Recorder	 Interactive exposure 	
3.	1. User Events	 Explanation. Conversation 	
3.2	2. Recorder	Didactical demonstration	
	3.2.1. Basic recording		
	3.2.2. Desktop recording		
	3.2.3. Web recording		
4. Ac	dvanced UI Interaction	 Interactive exposure 	

4.1. Input/output methods	Explanation. Conversation
4.2. Screen scraping	Didactical demonstration
4.3. Data scraping	Didactical demonstration
5. Selectors	Interactive exposure
5.1. Definition and access	Explanation. Conversation
5.2. Customization and debugging	Didactical demonstration
5.3. Dynamic selectors	Didactical demonstration
6. Image and Test Automation	Interactive exposure
6.1. Basic Citrix Automation	Explanation
6.1.1. Keyboard Automation	• Conversation
6.1.2. Information Retrieval	Didactical demonstration
6.2. Advanced Citrix Automation	Diduction demonstration
6.2.1. Best Practice Rules	
6.2.2. Starting Applications	
7. Excel. Data Tables	Interactive exposure
7.1. Basic Interactions	Explanation. Conversation
7.2. Data Process	Didactical demonstration
8. PDF Automation	Interactive exposure
8.1. Data Extraction	Explanation. Conversation
8.2. Anchor base Activity	Didactical demonstration
9. E-mail Automation	Interactive exposure
9.1. E-mail interaction	Explanation. Conversation
9.2. E-mail sending	Didactical demonstration
10. Orchestrator	Interactive exposure
10.1.Basics. Features	Explanation. Conversation
10.2.Jobs. Scheduler	Didactical demonstration
10.3.Queues	Didactical demonstration
11. Debugging and Exception Handling	Interactive exposure
11.1.UiPath debugging tools	Explanation. Conversation
11.2.Input issues	Didactical demonstration
11.3.Error catching	5 Diddetical demonstration
12. Robotic Enterprise Framework	Interactive exposure
12.1.ReFramework Architecture	Explanation. Conversation
12.2.Examples	Didactical demonstration
13. Testing. Deployment	Interactive exposure
13.1.Testing the RPA Solution	Explanation. Conversation
13.2.Deploying an RPA Solution	Didactical demonstration
14. Final considerations	Interactive exposure
14.1.ROI with RPA	Explanation. Conversation
14.2.Emerging and Future Trends in RPA	Didactical demonstration
Bibliography	- Diduction demonstration
Institute for RPA, An Introduction to RPA. A primer, ht	tn://irnaai.com/wn-content/unloads/2015/05/Robotic-
Process-Automation-June2015.pdf	ter, i i paditeorii, we content apiodasi 2015/05/1000tic-
1100000 Material and Louis Paris	

Steve Kaelble, RPA, https://www.nice.com/websites/rpa/assets/robotic process automation for dummies.pdf $KPMG, RPA, \\ \underline{https://home.kpmg/content/dam/kpmg/jp/pdf/jp-en-rpa-business-improvement.pdf}$ Assurity, Introduction to RPA, https://assurity.nz/assets/290a244552/An-Introduction-to-RPA.pdf UiPath, https://www.uipath.com/developers/video-tutorials

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Laboratory 1	Presentation, Conversation, Dialogue,	
UiPath Studio installation	Case studies	
RPA project setup		
2. Laboratory 2	Presentation, Conversation, Dialogue,	
Sequences. Flowcharts	Case studies	

3.	Laboratory 3	Presentation, Conversation, Dialogue,				
	Custom activities. Data processing	Case studies				
4.	Laboratory 4	Presentation, Conversation, Dialogue,				
	PDFs Automation	Case studies				
5.	Laboratory 5	Presentation, Conversation, Dialogue,				
	E-mail Automation	Case studies				
6.	Laboratory 6	Presentation, Conversation, Dialogue,				
	Project turn-in/Demo	Case studies				
7.	Laboratory 7	Evaluation				
	Project turn-in/Demo					
Re	References:					
Ca	Saa mafaman aaa fuam I aatumaa					

See references from Lectures.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to design and develop an automation solution for a repetitive business process, considering an identified flow.
- Students will know the components of the UiPath platform and to use them properly.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Seminar/laboratory	Three out of six lab activities will be	Laboratory Activity	30%
activities	graded. The arithmetic average of the		
	grades is denoted by L .		
10.5 Project	Design and develop a solution for	Project grading	70%
	business process automation in UiPath		
	Studio. The grade is denoted by P .		

Remark:

• The automation process project will pe achieved in groups of 2-3 students.

10.6 Minimum performance standards

- The final grade (M) is computed as follows: M = 30%L + 70%P.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date Signature of course coordinator

Signature of seminar coordinator

30.04.2020 Lect. PhD. Camelia Chisăliță-Crețu,

Lect. PhD. Camelia Chisăliță-Creţu,

Date of approval

Signature of the head of department

Prof. PhD. Anca Andreica