SYLLABUS

0 0 1	
1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the d	liscipli	ne (en)	Fo	rmal Languages	and Con	npiler Design	
(ro)							
2.2 Course coordi	nator		As	soc.Prof.PhD. Si	mona Mo	otogna	
2.3 Seminar coordinator			Assoc.Prof.PhD. Simona Motogna				
2.4. Year of study	3	2.5 Semester	5	2.6. Type of evaluation	E	2.7 Type of discipline	Compulsory
2.8 Code of the discipline	1	MLE5023		1	I	-	

3. Total estimated time (hours/semester of didactic activities)

		i diddetie detivities)			
3.1 Hours per week	6	Of which: 3.2 course	2	3.3	2sem
				seminar/laboratory	+ 2lab
3.4 Total hours in the curriculum	84	Of which: 3.5 course	28	3.6	56
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support	rt, bit	oliography, course note	s		20
Additional documentation (in libraries	s, on	electronic platforms, fi	eld do	cumentation)	10
Preparation for seminars/labs, homew	ork, j	papers, portfolios and e	essays		20
Tutorship					6
Evaluations					10
Other activities:					-
3.7 Total individual study hours		66			·
2.9 Total hours non compactor		150			

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	٠	Data Structures and Algorithms
-----------------	---	--------------------------------

1 0	
47	competencies
1.2.	competencies

• Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	• Laboratory with computers; high level programming language environment
activities	(.NET or any Java environement a.s.o.)

6. Specific competencies acquired

Professional	 C4.1 Definition of concepts and basic principles of computer science, and their mathematical models
competencies	and theories C4.2 Interpretation of mathematical and computer science models C4.5 Adoption of formal models in specific applications from different domains
Transversal competencies	CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accomodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand compiler design and to implement compiler techniques Improved programming skills
7.2 Specific objective of the discipline	 Acquire knowledge about back-end of a compiler Understand and work with formal languages concepts: Chomsky hierarchy; regular grammars, finite automata and the equivalence between them; context-free grammars, push-down automata and their equivalence Understand and work with compilers concepts: scanning, parsing

8. Content		
8.1 Course	Teaching methods	Remarks
1. General Structure of a compiler. Compiler phases	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
2. Scanning (Lexical Analysis)	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
3. Introductory notions of formal languages.	Exposure: description,	
Grammars and Finite Automata	explanation, examples,	
	debate, dialogue	
4. Regular languages, regular expressions,	Exposure: description,	

the second s	
equivalence between finite automata, regular	explanation, examples,
grammars and regular expressions. Pumping	proofs
lemma	
5. Context-free grammars, syntax tree	Exposure: description,
	explanation, examples,
	discussion of case
	studies
6. Parsing: general notions, classification.	Exposure: description,
	explanation, examples,
	discussion of case
	studies
7. Recursive-descendant parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
8. LL(1) parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
9. LR(k) Parsing method. LR(0) parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
10. SLR, LR(1), LALR parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
11. Scanner generator (lex); Parser generators (yacc)	Exposure: description,
	examples, discussion of
	case studies, live demo
12. Attribute grammars; generation of	Exposure: description,
intermediary code	explanation, examples,
	discussion of case
	studies
13. Code optimization and object code generation	Exposure: description,
cour opening and coject cour generation	explanation, examples,
	discussion of case
	studies
14. Push-down automata and Turing machines	Exposure: description,
The use down automata and Turing machines	explanation, examples,
	discussion of case
	studies
Pibliography	

Bibliography

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.

2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.

3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.

4. MOTOGNA, S. - Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

5. SIPSER, M., Introduction to the theory of computation, PWS Pulb. Co., 1997

6. CSÖRNYEI ZOLTÁN, Bevezetés a fordítóprogramok elméletébe, I, II., ELTE, Budapest, 1996

7. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.

8. CSÖRNYEI ZOLTÁN, Fordítási algoritmusok, Erdélyi Tankönyvtanács, Kolozsvár, 2000.

9. DEMETROVICS JÁNOS-DENEV, J.-PAVLOV, R., A számítástudomány matematikai alapjai, Nemzeti Tankönyvkiadó,

3.2 Seminar	Teaching methods	Remarks
1. Specification of a programming language; BNF	Explanation, dialogue,	
notation	case studies	
2. Grammars; language generated by a grammar;	Dialogue, debate, case	
grammar corresponding to a language	studies, examples,	
	proof	
3. Finite automata: language generated by a FA; FA	Dialogue, debate, case	
corresponding to a language	studies, examples,	
	proof	
4. Transformations: finite automata – regular	Dialogue, debate, case	
grammars	studies, examples,	
	proof	
5. Transformations: regular expressions – finite	Dialogue, debate, case	
automata	studies, examples,	
	proof	
6. Transformations: regular expressions – regular	Dialogue, debate, case	
grammars	studies, examples,	
	proof	
7. Context free grammars; descendent recursive	Dialogue, debate, case	
parser	studies, examples,	
0 11(4)	proof	
8. LL(1) parser	Dialogue, debate, case	
	studies, examples, proof	
Q = LP(Q) parsons	Dialogue, debate, case	
9. LR(0) parsers	studies, examples,	
	proof	
10. SLR parser	Dialogue, debate, case	
10. Jen pulsel	studies, examples,	
	proof	
11. LR(1) parser	Dialogue, debate, case	
	studies, examples,	
	proof	
12. Attribute grammars	Dialogue, debate, case	
	studies, examples,	
	proof	
13. Intermediary code	Dialogue, debate, case	
	studies, examples,	
	proof	
14. Push down automata	Dialogue, debate, case	
14. FUSH UUWH AULUHIALA	studies, examples,	
	proof	
3.2 Seminar	Teaching methods	Remarks
3.2 Seminar Task 1: Specify a mini-language and implement scanner	Teaching methods Explanation, dialogue,	Remarks
 3.2 Seminar Task 1: Specify a mini-language and implement scanner 1: Mini language specification (BNF notation) 	Teaching methods Explanation, dialogue, case studies	Remarks
3.2 Seminar Task 1: Specify a mini-language and implement scanner 1: Mini language specification (BNF notation) Task 1: Specify a mini-language and implement scanner	Teaching methods Explanation, dialogue, case studies Explanation, dialogue,	Remarks
 3.2 Seminar Task 1: Specify a mini-language and implement scanner 1: Mini language specification (BNF notation) 2. Task 1: Specify a mini-language and implement scanner 2: implement main functions in scanning 	Teaching methods Explanation, dialogue, case studies Explanation, dialogue, case studies	Remarks
3.2 Seminar Task 1: Specify a mini-language and implement scanner 1: Mini language specification (BNF notation) Task 1: Specify a mini-language and implement scanner	Teaching methods Explanation, dialogue, case studies Explanation, dialogue,	Remarks

		1
1.4: Main program, testing + delivery	evaluation	
5. Task 2: regular grammars + finite automata +	Explanation, dialogue,	
transformations	case studies	
2.1: Define data structures for RG and FA; implement		
transformations		
6. Task 2: regular grammars + finite automata +	Testing data discussion,	
transformations	evaluation	
2.2: Main program, testing + delivery		
7. Task 3: context free grammars + equivalent	Explanation, dialogue,	
transformations of cfg	case studies	
3.1: extend task 2 for cfg; implement transformations		
8. Task 3: context free grammars + equivalent	Testing data discussion,	
transformations of cfg	evaluation	
3.2: Main program, testing + delivery		
9. Task 4: Parser implementations	Explanation, dialogue,	One of: descendant
4.1: define data structures and architecture of application	case studies	recursive, LL(1), LR(0), SLR
10. Task 4: Parser implementations	Explanation, dialogue,	Task 4 is developed in teams
4.2: implement main functions in parsing	case studies	of 2 students
11. Task 4: Parser implementations	Explanation, dialogue,	
4.3: main program and module integration	case studies	
12. Task 4: Parser implementations	Testing data discussion,	
4.4: testing on small formal grammars	evaluation	
13. Task 4: Parser implementations	Testing data discussion,	
4.5: testing on mini-language; delivery	evaluation	
14. Task 5: use tools for lexer and parser generator: lex,	Explanation, dialogue,	
yacc – implementation + delivery	case studies	
	•	

Bibliography

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.

2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.

3. MOTOGNA, S. - Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

4. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ. Babes-Bolyai, Cluj-Napoca, 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	70%
10.5 Seminar and lab	- be able to apply algorithms,	problems solved - homeworks	10%

activities	understand examples -	delivered - continuous		
	problem solving	observations during semester		
	- be able to implement	-Practical examination during	20%	
	course concepts and	all semester -documentation -		
	algorithms	portofolio -continous		
	- apply techniques for	observations		
	different classes of			
	programming languages			
10.6 Minimum performance standards				
Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester				
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.				

Signature of course coordina	tor Signature of seminar coordinator
oc.Prof.PhD. Simona MOTOGNA	Assoc.Prof.PhD. Simona MOTOGNA

Date of approval

Signature of the head of department

.....

.....