SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Da	Data Structures and Algorithms				
(ro)							
2.2 Course coordinator			Le	Lect. PhD. Oneț-Marian Zsuzsanna			
2.3 Seminar coordinator		Le	Lect. PhD. Oneț-Marian Zsuzsanna				
2.4. Year of	1	2.5	2 2.6. Type of E 2.7 Type of Compulso			Compulsory	
study		Semester		evaluation		discipline	
2.8 Code of the		MLE5022					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1
					lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays					12
Tutorship					6
Evaluations				10	
Other activities:					
3.7 Total individual study hours		11			

3.7 Total individual study hours	44
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	•	Fundamentals of programming
-----------------	---	-----------------------------

4.2. competencies	•	Medium programming skills
-------------------	---	---------------------------

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

or Special	te competencies acquired
Professional competencies	C4.1. Definition of concepts and basic principles of computer science, and their mathematical models and theories.
Professional competencies	C4.3. Identification of adequate models and methods for solving real problems
Pre	C4.5. Adoption of formal models in specific applications from different domains
sal cies	CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
Transversal	CT3. Use efficient methods and techniques for learning, gaining knowledge, researching and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study of data structures (arrays, linked lists, heaps, hash tables, binary trees) that can be used to implement abstract data types.
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure/abstract data type libraries.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction. Data structures. Abstract	- Exposure	
Data Types	- Description	
 Data abstractization and encapsulation 	- Examples	
 Pseudocode conventions 	- Didactical	
 Complexities 	demonstration	

2. Arrays. Iterators	- Exposure
Dynamic array	- Description
Amortized analysis	- Conversation
Interface of an iterator	- Didactical
	demonstration
3. Abstract Data Types	- Exposure
 ADT Set: description, domain, 	- Description
interface and possible representations	- Conversation
• ADT Map: description, domain,	- Didactical
interface and possible representations	demonstration
ADT Matrix: description, domain,	
interface and possible representations	
ADT MultiMap: description, domain,	
interface and possible representations	T.
4. Abstract Data Types II	- Exposure
ADT Stack: description, domain,	DescriptionConversation
interface and possible representations	- Conversation - Didactical
ADT Queue: description, domain, interface and possible representations.	demonstration
interface and possible representationsADT PriorityQueue: description,	demonstration
domain, interface and possible	
representations	
ADT Deque: description, domain,	
interface and possible representations	
ADT List: description, domain,	
interface and possible representations	
5. Linked Lists	- Exposure
Singly linked list: representation and	- Description
operations	- Conversation
Doubly linked list: representation and	- Didactical
operations	demonstration
 Iterator for linked lists 	- Case study
6. Linked Lists II	- Exposure
 Sorted linked lists: representation and 	- Description
operations	- Conversation
 Circular linked lists: representation 	- Didactical
and operations	demonstration
Linked lists on arrays: representation	
and operations	-
7. Binary Heap	- Exposure
Representation, specific operations	DescriptionConversation
HeapSort	- Conversation - Didactical
	- Didactical demonstration
8. Hash Table	- Exposure
Direct address tables	- Description
 Hash tables: description, properties 	- Conversation
 Collision resolution through separate 	- Didactical
chaining	demonstration
9. Hash Table	- Exposure
	<u> </u>

 Collision resolution through coalesced chaining Collision resolution through open addressing 	 Description Conversation Didactical demonstration
10. Hash tables	- Exposure - Description - Conversation - Didactical demonstration - Exposure - Description - Conversation - Didactical demonstration - Discription - Discription - Discription
 Representation Operations: recursive and non-recursive algorithms Containers represented over binary search tables 	- Conversation - Didactical demonstration
13. Balanced Binary Search TreesAVL Trees	 Exposure Description Conversation Didactical demonstration
14. Applications and data structure libraries in different programming languages (Python, C++, Java, C#)	 Examples Exposure Description Conversation Didactical demonstration

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.2 Seminar	Teaching methods	Remarks
		Seminar is structured as 2
		hour classes every second
		week.

1 ADT D '.1 ' 1	Г	
1. ADT Bag with generic elements.	- Exposure	
Representations and implementations on an	 Conversation 	
array. Iterator for ADT Bag.	- Examples	
	- Debate	
2. Complexities	- Exposure	
	- Examples	
	- Debate	
	- Conversation	
3. Sorted Multi Map – representation and	- Exposure	
implementation on a singly linked list.	- Examples	
	- Debate	
	- Conversation	
4. Bucket sort, Lexicographic sort, radix sort.	- Exposure	
Merging two singly linked lists	- Examples	
	- Debate	
	- Conversation	
5. Written test	- Written test	Written test takes 50
Hash tables – collision resolution through	- Exposure	minutes
separate chaining	- Examples	
	- Debate	
	- Conversation	
6. Hash tables. Collision resolution through	- Exposure	
coalesced chaining.	- Examples	
	- Debate	
	- Conversation	
7. Binary Trees	- Exposure	
	- Examples	
	- Debate	
	- Conversation	
Du ii	2311, 212,011	I

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.3 Laboratory	Teaching methods	Remarks
		Laboratory is structured
		as 2 hour classes every
		second week.
		Laboratory problems
		assigned at a lab have to
		be presented in the next
		lab (exception is Lab1).
		Every laboratory focuses
		on a given data structure.
		Students will receive a
		container (ADT) that has
		to be implemented using

		the given data structure.
Lab 1: Dynamic Array	- Exposure	To be presented at Lab 3
	- Examples	
	- Conversation	
Lab 2: Linked lists with dynamic allocation	- Exposure	During the lab students
	- Examples	will get help with their
	 Conversation 	first assignment.
Lab 3: Linked lists on arrays	- Exposure	Lab1 and Lab2 have to be
	- Examples	presented
	- Conversation	
Lab 4: Binary heap and problems/functions using	- Exposure	
binary heap.	- Examples	
	 Conversation 	
Lab 5: Hash Table	- Exposure	
	- Examples	
	 Conversation 	
Lab 6: Binary Search Tree	- Exposure	
	- Examples	
	 Conversation 	
Lab 7: Presentation of problem from Lab 6.	- Exposure	
	- Examples	
	- Conversation	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures and algorithms courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the course concepts 	Written evaluation (in the exam session): written exam	60%

10.5 Laboratory	 C++ implementation of the concepts and algorithms presented at the lectures Lab assignment 	Correctness of the implementation and documentation (representation, specifications, algorithms, complexities).	20%
	documentationRespecting the deadlines for lab presentation	complexities).	
10.6 Seminar	• Written test from seminar 5.	Written test	20%

10.6 Minimum performance standards

- Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.
- For participating at the written exam, a student must have at least 5 seminar attendances and 6 laboratory attendances.
- For successfully passing the examination, a student must have at least 5 for the laboratory and the written exam, and minimum 5 as a final grade.

Date Signature of course coordinator Signature of seminar coordinator

04.05.2020 Lect. PhD. Onet-Marian Zsuzsanna Lect. PhD. Onet-Marian Zsuzsanna

Date of approval Signature of the head of department

Lect. PhD. Sterca Adrian