SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor of Science
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline	Mathematical Analysis
2.2 Course coordinator	Lect. dr. Adriana Nicolae
2.3 Seminar coordinator	Lect. dr. Adriana Nicolae
2.4. Year of study12.5 Semester	1 2.6. Type of evaluation E 2.7 Type of discipline Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course supp	ort, bi	bliography, course note	es		30
Additional documentation (in librar	es, on	electronic platforms, f	ïeld o	locumentation)	10
Preparation for seminars/labs, homework, papers, portfolios and essays				20	
Tutorship					14
Evaluations					20
Other activities				-	
3.7 Total individual study hours 94					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	High-school calculus
4.2. competencies	Computing limits, derivatives, and antiderivatives
	Analytic thinking

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6. Specific competencies acquired

_	
Professional competencies	 C1.1 Identification of notions, description of theories and use of specific language. C1.4 Recognition of main classes/types of mathematical problems and of appropriate techniques for solving them. C5.2 Use of mathematical arguments to prove mathematical results.
Transversal competencies	• CT3 Use of efficient methods and techniques for learning, information, research and development of abilities for the valorization of acquired knowledge, for adapting to the needs of a dynamic society and for communication in Romanian as well as in a widely used foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

	1 1	,
7.1 General objective of	To acquire elementary knowledg	e about differential and integral
the discipline	calculus for real-valued function	s of one and several real variables and
	to apply it in solving concrete pro-	oblems
7.2 Specific objective of	To know and use the following s	pecific notions: sequences and series
the discipline	of real numbers, limits of function	ons, directional derivatives, partial
	derivatives, extremum points, im	proper integrals, multiple integrals

8. Content

8.1 Course	Teaching methods	Remarks
1. The real numbers: some basic concepts	Lecture, discussion, didactical	
	demonstration, problematisation	
2. Sequences of real numbers	Lecture, discussion, didactical	
	demonstration, problematisation	
3. Series of real numbers. Series with	Lecture, discussion, didactical	
nonnegative terms (I)	demonstration, problematisation	
4. Series with nonnegative terms (II).	Lecture, discussion, didactical	
Alternating series	demonstration, problematisation	
5. Growth of functions. Applications	Lecture, discussion, didactical	
	demonstration, problematisation	
6. Limits, continuity and differentiation of	Lecture, discussion, didactical	
real-valued functions of one real variable	demonstration, problematisation	
7. Higher order derivatives. Taylor series	Lecture, discussion, didactical	
	demonstration, problematisation	
8. The Euclidean space \mathbb{R}^n . Sequences in \mathbb{R}^n	Lecture, discussion, didactical	
	demonstration, problematisation	
9. Limits and continuity of real-valued	Lecture, discussion, didactical	
functions of several variables	demonstration, problematisation	
10. Directional and partial derivatives	Lecture, discussion, didactical	
	demonstration, problematisation	
11. Local and global extremum points for real-	Lecture, discussion, didactical	
valued functions	demonstration, problematisation	
12. Riemann integrals. Improper integrals	Lecture, discussion, didactical	
	demonstration, problematisation	

13. Multiple integrals	Lecture, discussion, didactical
	demonstration, problematisation
14. Change of coordinates in the plane	Lecture, discussion, didactical
	demonstration, problematisation

Bibliography

1. R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis, 4th ed., John Wiley & Sons Inc., New York, 2011.

2. W.W. Breckner, Analiză matematică. Topologia spațiului ℝⁿ, Universitatea din Cluj-Napoca, Cluj-Napoca, 1985.

3. Ş. Cobzaş, Analiză matematică - Calculul diferențial, Presa Universitară Clujeană, Cluj-Napoca, 1997.

4. M. Mureşan, A Concret Approach to Classical Analysis, Springer, New York, 2008.

5. M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists, Foundations, Methods, and Algorithms, Springer, London, 2011.

6. W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill Inc., New York, 1976.

7. P. Straffin ed., Applications of Calculus, Mathematical Association of America, Washington, DC, 1993.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Classical inequalities	Discussion, problem solving,	
	didactical demonstration	
2. Properties of real numbers. Sequences of	Discussion, problem solving,	
real numbers (I)	didactical demonstration	
3. Sequences of real numbers (II)	Discussion, problem solving,	
	didactical demonstration.	
4. Computing the sum of some series of real	Discussion, problem solving,	
numbers	didactical demonstration	
5. Convergence/divergence of some series of	Discussion, problem solving,	
real numbers	didactical demonstration	
6. Limits, continuity, and differentiation of	Discussion, problem solving,	
real-valued functions of one real variable	didactical demonstration	
7. Higher order derivatives. Taylor series	Discussion, problem solving,	
	didactical demonstration	
8. The Euclidean space \mathbb{R}^n . Sequences in \mathbb{R}^n	Discussion, problem solving,	
	didactical demonstration	
9. Limits and continuity of real-valued	Discussion, problem solving,	
functions of several variables	didactical demonstration	
10. Directional and partial derivatives	Discussion, problem solving,	
	didactical demonstration	
11. Extremum problems	Discussion, problem solving,	
	didactical demonstration	
12. Riemann integrals. Improper integrals	Discussion, problem solving,	
	didactical demonstration	
13. Multiple integrals	Discussion, problem solving,	
	didactical demonstration	
14. Change of coordinates in the plane	Discussion, problem solving,	
	didactical demonstration	

Bibliography

1. D.I. Duca, E. Duca, Exerciții și probleme de analiză matematică, vol. I, II, Casa Cărții de Știință, Cluj-Napoca, 2007, 2009. 2. W.J. Kaczor, M.T. Nowak, Problems in Mathematical Analysis, vol. I, II, III, American Mathematical Society, 2000, 2001, 2003.

3. T. Trif, Probleme de calcul diferențial și integral în Rⁿ, Casa Cărții de Știință, Cluj-Napoca, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

This course ensures a solid theoretical background, according to national and international standards.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowledge of basic notions, examples, and results	- Homework assignments containing exercises on the discussed topics	- Homework assignments: 40% - Exam: 60%
10.5 Seminar/lab activities	Problem solving using concepts and results acquired during the lecture classes	 Open book and open notes exam covering the whole material Lecture and seminar activity 	- Lecture and seminar activity: bonus 6%
10.6 Minimum performance standards			
Both the grade at the exam and the final average should be at least 5.			

Date	Signature of course coordinator	Signature of seminar coordinator
27.09.2020	Lect. dr. Adriana Nicolae	Lect. dr. Adriana Nicolae

Date of approval

.....

Signature of the head of department

Prof. dr. Octavian Agratini