SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the di	sciplin	e (en)	Social Network Analysis				
(ro)			Analiza Reţelelor Sociale				
2.2 Course coordin	nator		Conf. Dr. Camelia Chira				
2.3 Seminar coordinator			Conf. Dr. Camelia Chira				
2.4. Year of study	1	2.5 Semester	2	2.6. Type of	E	2.7 Type of	Optional
				evaluation		discipline	
2.8 Code of the		MME8176					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 lab + 1
				seminar/laboratory	project
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					14
Other activities:					-
3.7 Total individual study hours		110			

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 Algorithms and Programming, OOP
4.2. competencies	 Good programming skills

5. Conditions (if necessary)

5.1. for the course	Projector
5.2. for the seminar /lab	Computers, Network visualization tools, Python/Java/C++
activities	programming environment

6. Specific competencies acquired

o. Specifi	ic competencies acquired
Professional competencies	C3.4 Analysis of data and models CE1.4 Identification and explanation of Artificial Intelligence techniques and algorithms and their use for solving specific problems CE1.5 Using models and solutions from Artificial Intelligence in dedicated applications
Transversal competencies	CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT2. Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Introduce the interdisciplinary academic field of network science and the modern theory and applications of social networks
7.2 Specific objective of the discipline	Describe the concepts and methods used in social network analysis, define network models (random, small-world, scale-free) and processes on networks, theory and modelling of complex networks, analysis of real-world network datasets.

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to Network Science and Social Networks Analysis. Real-world networks Network properties and basic definitions Network metrics and centrality measures Random networks Small world networks Growth and preferential attachment Community detection in networks Spreading phenomena 10. Epidemic models over networks 11. Social networks in the real world 12. Applications 1314. Student presentations	 Interactive exposure Presentation Explanation Practical examples Case-study discussions 	

Bibliography

- 1. Albert-Laszlo Barabasi, Network Science, Cambridge University Press, 2016.
- 2. Mark Newman, Networks: An Introduction, Oxford University Press, 2010.
- 3. David Easley, Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
- 4. Ernesto Estrada, The Structure of Complex Networks Theory and Applications, Oxford University Press, 2011.
- 5. Melanie Mitchell, Complexity: A Guided Tour, Oxford University Press, 2009.
- 6. Robert A. Hanneman, Mark Riddle. 2005. Introduction to social network methods. Riverside, CA: University of California, Riverside (published in digital form at http://faculty.ucr.edu/~hanneman)
- 7. D. J. Watts, P. S. Dodds, M. E. J. Newman. Identity and Search in Social Networks. Science, 296, 1302-1305, 2002.

8.2 Seminar / laboratory	Teaching methods	Remarks
	 Interactive exposure 	
The goal is to use social network analysis methods	 Explanation 	
and tools in real-world applications.	• Conversation	
	 Didactical demonstration 	
Each student will work within a team to		
implement a project focusing on applying social		
network analysis to real data (for example,		
analyse the network of characters in a book,		
movie or TV series, analyse the social circles		
from Facebook/Twitter/Google+).		
m 1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
To achieve these goals, seminar/laboratory work		
(2 hours every 2 weeks) will have the following		
structure:		
1 7 . 1 .		
1. Introduction		
- Explore social network analysis tools.		
- Familiarize with the representation of		
networks.		

- 2. Network analysis and visualization
 - Investigate network properties such as node degree distribution, clustering coefficient, and centrality in network datasets.
 - Discover ways to visualize social networks.
- 3. Network models
 - Investigate network models (random graphs, small worlds, power-law)
 - Work with real-world social network data.
- 4. Social network analysis project I
 - Specify a theme for the project.
 - Define your own social networks from fiction and/or non-fiction.
- 5. Social network analysis project II
 - Network visualization
 - Explore the properties of the social networks analysed e.g. node degree distribution, clustering coefficient, centrality, communities.
- 6-7. Social network analysis project III
 - Analyse results
 - Prepare project presentation

Bibliography

- 1. Albert-Laszlo Barabasi, Network Science, Cambridge University Press, 2016.
- 2. Mark Newman, Networks: An Introduction, Oxford University Press, 2010.
- 3. David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
- 4. Ernesto Estrada, The Structure of Complex Networks Theory and Applications, Oxford University Press, 2011.
- 5. Jure Leskovec, Andrej Krevl, SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.stanford.edu/data, 2014.
- 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program
 - The course exists in the studying program of all major universities abroad;

10. Evaluation

			1
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Know basic concepts,	Written exam / research	50%
	models and theories from	paper and presentation	
	the domain of social		
	networks;		
	Apply known concepts to		
	perform social network		
	analysis		
10.5 Seminar/lab activities	Specify, design,	Project implementation and	50%
	implement and test social	presentation	
	network analysis		
	methods		
10.6 Minimum performar	nce standards		

10.6 Minimum performance standards

Each student should obtain minimum 5 for the written exam /research paper and presentation, as well as for the final grade.

Date	Signature of course coordinator	Signature of seminar coordinator
27.04.2020	Conf. dr. Camelia Chira	Conf. dr. Camelia Chira
Date of approval	Signature o	f the head of department
	Prof.	dr. Anca Andreica