SYLLABUS

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics and Computer Science of the Hungarian
	Line
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Data analysis and modelling
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)			Game theory				
(ro)							
2.2 Course coordinator		Pre	Prof. dr. Kassay Gábor				
2.3 Seminar coordinator		Pro	of. dr. Kassay Gábor				
2.4. Year of study	1	2.5 Semester	1	2.6. Type of evaluation	Ex	2.7 Type of discipline	Opti
							onal
2.8 Code of the disc	cipline	MME3062					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per w	eek	3	Of which: 3.2 course	2	3.3	1
1					seminar/laboratory	
3.4 Total hours i	n the curriculum	42	Of which: 3.5 course	28	3.6	14
					seminar/laboratory	
Time allotment:			L	•	· · · · · · · · · · · · · · · · · · ·	hours
Learning using r	nanual, course suppor	t, bił	liography, course note	s		40
Additional docu	mentation (in libraries	, on	electronic platforms, fi	eld do	cumentation)	37
Preparation for seminars/labs, homework, papers, portfolios and essays						40
Tutorship					10	
Evaluations					6	
Other activities:						
3.7 Total individ	ual study hours		133			
3.8 Total hours 175						
per semester						
3.9 Number of 7						
ECTS credits						

4. Prerequisites (if necessary)

4.1. curriculum	• no
4.2. competencies	• Elementary knowledges from Mathematical Analysis and
	Probability Theory

5. Conditions (if necessary)

5.1. for the course	•	Video projector, blackboard
5.2. for the seminar /lab	•	Video projector, blackboard
activities		

6. Specific competencies acquired

al ies	- Development of elementary modelling competencies
ion enci	- Analysis and developments of algorithms
Profess compet	- Elementary competences in proving minimax and saddle-point theorems
Transversal competencies	Developing problem solving competencies

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• Learnig about some important concepts, theorems and applications of
discipline	game theory,
7.2 Specific objective of the	• Learnig about the most important minimax theorems
discipline	Learnig about classical noncooperative games
	Game theoretical modelling of some real world problems
	Introduction to elementary cooperative game theory
	• Algorithms for solving game theoretical problems

8. Content

8.1 Course	Teaching methods	Remarks
1. The mathematical concept of a game. Conflict	teacher's exposition,	
situations. Pure and mixed strategies, optimal	induction, excercising	
strategies.		
2. Matrix games. Models leading to matrix games.	teacher's exposition,	
Necessary and sufficient conditions of the existence of	induction, excercising	
a saddle-point.		
3. Bimatrix games. Examples. Extending the strategy	teacher's exposition,	
sets and payoff functions. Duopoly economy.	induction, excercising	
4. Theorem of John von Neumann, the cornerstone of	teacher's exposition,	
game theory.	induction, excercising	
5. Two person cooperative games. Extension of	teacher's exposition,	
noncooperative game to the cooperative case.	induction, excercising	
6. Nash's bargaining function.	teacher's exposition,	
	induction, excercising	
7. The algorithm for finding the Nash's bargaining	teacher's exposition,	
solution.	induction, excercising	
8. The simplex method for solving linear optimization	teacher's exposition,	
problems.	induction, excercising	
9. The dual simplex method.	teacher's exposition,	
	induction, excercising	
10-11. Solving matrix games using simplex and/or	teacher's exposition,	
dual simplex method.	induction, excercising	

12. Solving matrix games using graphical method.	teacher's exposition,	
	induction, excercising	
13-14. n-person games. Nash's equilibrium points	teacher's exposition,	
(NEP). Nash's theorems for the existence of NEP.	induction, excercising	

Bibliography

1. J.P. Aubin: Mathematical methods of game and economic theory, North Holland, Amsterdam, 1979.

2. J.B.G Frenk, G. Kassay: Introduction to Convex and Quasiconvex Analysis, in: Handbook of Generalized Convexity and Monotonicity, Series: Nonconvex Optimization and its Applications, Vol. 76, Hadjisavvas,Nicolas; Komósi, Sándor; Schaible, Siegfried (Eds.), pp. 3-87 Springer, Berlin-Heidelberg-New York 2005.

3. J.B.G. Frenk, G. Kassay: On noncooperative games, minimax theorems and equilibrium problems, in: Pareto Optimality, Game Theory and Equilibria, Athanasios Migdalas (Crete), Panos Pardalos (Florida), Leonidas Pitsoulis (London) and Altannar Chinchuluun (Florida) (Eds.), Springer Verlag, t2007.

4. A.J. Jones: Game theory: mathematical models of conflict, Horwood Publishing, Chicester, 2000.

5. G. Kassay: The Equilibrium Problem and Related Topics, Risoprint, Cluj, 2000.

6. G. Kassay, V. Rădulescu: *Equilibrium Problems and Applications,* Series: Mathematics in Science and Engineering, Academic Press – an imprint of Elsevier, London-San Diego-Cambridge MA-Oxford, 2019.

7. J. Nash: Non-cooperative games, Ann. of Math. 54:286—295, 1951. 7. J. von Neumann, O. Morgenstern: Theory of games and economic behavior, Princeton University Press, Princeton, 1944

8. R.T. Rockafellar: Convex analysis, Princeton University Press, Princeton, 1972.

9. J. Szép, F. Forgó: Introduction to the theory of games, Akadémiai Kiadó, Budapest, 1985.

10. Christian-Oliver Ewald: Games, Fixed Points and Mathematical Economics, http://ssrn.com/abstract=976592

8.2 Seminar / laboratory	Teaching methods	Remarks
1-2. Matrix having saddle-points. Examples and		
exercises leading to matrix games.		
3-4. Finding saddle-points in case of some special		
functions.		
5-6. Algorithm of finding the Nash's bargaining		
solutions.		
7-8. Exercising the simplex algorithm.		
9-10. Exercisind the dual simplex algoritm.		
11-12. Exercising the graphical method.		
13-14. Repetition and concluding remarks.		
Bibliography		

Bibliography

1. J.P. Aubin: Mathematical methods of game and economic theory, North Holland, Amsterdam, 1979.

2. J.B.G Frenk, G. Kassay: Introduction to Convex and Quasiconvex Analysis, in: Handbook of Generalized Convexity and Monotonicity, Series: Nonconvex Optimization and its Applications, Vol. 76, Hadjisavvas,Nicolas; Komósi, Sándor; Schaible, Siegfried (Eds.), pp. 3-87 Springer, Berlin-Heidelberg-New York 2005.

3. J.B.G. Frenk, G. Kassay: On noncooperative games, minimax theorems and equilibrium problems, in: Pareto Optimality, Game Theory and Equilibria, Athanasios Migdalas (Crete), Panos Pardalos (Florida), Leonidas Pitsoulis (London) and Altannar Chinchuluun (Florida) (Eds.), Springer Verlag, t2007.

4. A.J. Jones: Game theory: mathematical models of conflict, Horwood Publishing, Chicester, 2000.

5. G. Kassay: The Equilibrium Problem and Related Topics, Risoprint, Cluj, 2000.

6. G. Kassay, V. Rădulescu: *Equilibrium Problems and Applications,* Series: Mathematics in Science and Engineering, Academic Press – an imprint of Elsevier, London-San Diego-Cambridge MA-Oxford, 2019.

7. J. Nash: Non-cooperative games, Ann. of Math. 54:286—295, 1951. 7. J. von Neumann, O. Morgenstern: Theory of games and economic behavior, Princeton University Press, Princeton, 1944

8. R.T. Rockafellar: Convex analysis, Princeton University Press, Princeton, 1972.

9. J. Szép, F. Forgó: Introduction to the theory of games, Akadémiai Kiadó, Budapest, 1985.

10. Christian-Oliver Ewald: Games, Fixed Points and Mathematical Economics, http://ssrn.com/abstract=976592

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the course/seminar is similar and in accordance with those taught in most European universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)

10.4 Course	Writing exam at the end of	Evaluation	60%
	semester		
10.5 Seminar/lab activities	Presentation of different	According points	40%
	topics by the students and		
	assigned homeworks		
10.6 Minimum performanc	e standards		
 Compulsory to gather 	r half of the total points accorded	d for presentations and homework	S

Date	Signature of course coordinator	Signature of seminar coordinator
03.05.2020	Prof. dr. Kassay Gábor	Prof. dr. Kassay Gábor
Date of approval	Signature of the head of department	
	Conf. dr. András Szilárd	