SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Programare bazata pe componente

2. Information regarding the discipline

	•
2.1 Name of the discipline	Formal Methods in Programming
2.2 Course coordinator	Lect. PhD. Vladiela Petraşcu
2.3 Seminar coordinator	Lect. PhD. Vladiela Petraşcu
2.4. Year of study 1 2.5 Seme	ester 1 2.6. Type of evaluation E 2.7 Type of discipline Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)				28	
Preparation for seminars/labs, homework, papers, portfolios and essays			28		
Tutorship			6		
Evaluations			4		
Other activities:					
3.7 Total individual study hours 94					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	Basic Computational Logic knowledge
4.2. competencies	-

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab activities	Computers, videoprojector, Internet acces

6. Specific competencies acquired

Professional competencies	C 4.1 Ability to define fundamental computer science concepts and principles, as well as theories and mathematical models C 4.2 Ability to interpret formal mathematical and computer science models C 4.3 Ability to identify appropriate models and methods for solving real problems C 4.5 Ability to incorporate formal models in specific applications from various fields
sal compete	CT1 Ability to apply rules of organized and efficient work, of a responsible attitude towards the teaching-scientific domain, in order to creatively harness one's own potential, by respecting the rules and principles of professional ethics CT3 The use of effective methods and techniques of learning, information, research and capacity of knowledge exploitation, to adapt to a dynamic society and communication in Romanian and in an international language

7. Objectives of the discipline (outcome of the acquired competencies)

7. Objectives of the discipline (outcome of the dequired competences)		
7.1 General objective of	Making students assimilate the fundamental aspects related to the use of	
the discipline	formal techniques in system specification, development and verification,	
	as well as making them acquire the ability to reason formally, to analyze	
	algorithms correctness and to measure programs' quality.	
7.2 Specific objective of	At the end of the course, students will:	
the discipline	be able to define Formal Methods (FMs), provide taxonomies and argue	
	on the role and necessity of FMs in software development;	
	• have knowledge of a full-fledged model-oriented formal method such as	
	B and be able to (incrementally) specify a system in B, prove the	
	consistency of the resulting specification and refine it;	
	understand the basic concepts related to model checking and be able to	
	apply a model checking algorithm in order to verify whether a given	
	system satisfies a particular property.	

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to Formal Methods.	Description, explanation,	
Overview of Formal Methods Techniques and Tools	dialogue, examples	
2. Algorithm Correctness	Description, explanation,	
	dialogue, examples, proofs	
3. Reliability-ensuring Paradigms	Description, explanation,	
	dialogue, examples	
4. The B Method: Introduction to the Abstract	Description, explanation,	
Machine Notation (AMN) and Generalised	dialogue, examples,	
Substitution Language (GSL)	discussion of case studies,	
	proofs	

5. B Mathematical Notation: Relations, Functions and Sequences	Description, explanation, dialogue, examples
6. Structuring Mechanisms for B Specifications - INCLUDES	Description, explanation, dialogue, examples, discussion of case studies, proofs
7. Structuring Mechanisms for B Specifications – SEES and USES	Description, explanation, dialogue, examples, discussion of case studies, proofs
8. Refining B Specifications – Data Refinement	Description, explanation, dialogue, examples, discussion of case studies
 Refining B Specifications – Refinement of Nondeterminism and Proof Obligations for Refinement 	Description, explanation, dialogue, examples, discussion of case studies, proofs
10. From UML/OCL Models to B Specifications. Formal Verification of Object-Oriented Models	Description, explanation, dialogue, examples, discussion of case studies
11. Introduction to Model Checking. System Modeling: Transition Systems	Description, explanation, dialogue, examples
12. Property Specification: Temporal Logic	Description, explanation, dialogue, examples
13. Model Checking Algorithms	Description, explanation, dialogue, examples
14. Model Checking Tools	Description, explanation, dialogue, discussion of case studies

Bibliography

- [1] Abrial, J.-R., *The B Book Assigning Programs to Meanings*, Cambridge University Press, 1996.
- [2] Almeida, J.B., et al., *Rigorous Software Development: An Introduction to Program Verification*, Springer, 2011.
- [3] Baier, C. and Katoen, J.-P., *Principles of Model Checking*, The MIT Press, 2008.
- [4] Clarke, E.M. and Lerda, F., *Model Checking: Software and Beyond*, Journal of Universal Computer Science, 13(5), 639-649, 2007.
- [5] Clarke, E.M., Wing, J.M., et al., Formal Methods: State of the Art and Future Directions, ACM Computing Surveys, 28(4):626-643, 1996.
- [6] Frențiu, M. and Pop, H.F., Fundamentals of Programming, Cluj University Press, 2006. (chapter 2)
- [7] Hall, A., Chapman, R., *Correctness by Construction: Developing a Commercial Secure System*, IEEE Software, January/February 2002, pp. 18–25.
- [8] Haxthausen, A.E., An Introduction to Formal Methods for the Development of Safety-critical Applications, 2010.
- [9] Holloway, C.M., *Why Engineers Should Consider Formal Methods*, Proceedings of the 16th Digital Avionics System Conference, 1997.
- [10] McConnel, S., Code Complete (2nd ed.), Microsoft Press, 2004.(Chapter 8 Defensive Programming)
- [11] Meyer, B., *Object-Oriented Software Construction (2nd ed.)*, Prentice-Hall, 1997. (Chapter 11 Design by Contract: building reliable software)
- [12] Meyer, B., *Applying "Design by Contract"*, IEEE Computer 25(10):40-51, 1992.
- [13] Merz., S., *Model Checking: A Tutorial Overview*, Lecture Notes in Computer Science 2067, pp. 3 38, 2001.
- [14] Mills, H., Dyer, M., Linger, R., Cleanroom Software Engineering, IEEE Software 4 (5): 19–25, 1987.
- [15] Muler-Olm, M., Schmidt, D., and Steffen, B., *Model Checking: A Tutorial Introduction*, Lecture Notes

in Computer Science 1694, pp. 330 - 354, 1999.

[16] Schneider, S., *The B-Method - An Introduction*, Palgrave Macmillan, Cornerstones of Computing series, 2001.

8.2 Seminar / laboratory	Teaching methods	Remarks
Organizing Moments.	Description, explanation,	Seminar is organized
Myths and Commandments of Formal Methods.	conversation, debate, case	as a total of 14 hours
Industrial FM Success Stories	studies	2 hours every other
		week
2. Proving Algorithm's Correctness.	Description, explanation,	
Paper Presentations.	conversation, debate,	
	examples, proofs	
3. Introduction to the AtelierB tool.	Description, explanation,	
Simple Abstract Machine Specifications and	conversation, debate,	
Consistency Checks using AtelierB.	examples, proofs	
Paper Presentations.		
4. Incremental B Specification Examples.	Description, explanation,	
Paper Presentations.	conversation, debate,	
	examples, proofs	
5. B Refinement Examples.	Description, explanation,	
Paper Presentations.	conversation, debate,	
	examples, proofs	
6. Model Checking Examples.	Description, explanation,	
Paper Presentations.	conversation, debate,	
	examples, proofs	
7. Project Presentations	Description, explanation,	
	conversation	

Bibliography

- [1] Bowen, J.P., Hinchey, M.G., Seven More Myths of Formal Methods, IEEE Software, 12(4):34-41, 1995.
- [2] Bowen, J.P., Hinchey, M.G., *Ten Commandments of Formal Methods*, IEEE Computer, 28(4):56-63, 1995.
- [3] Bowen, J.P., Hinchey, M.G., *Ten Commandments of Formal Methods ... Ten Years Later*, IEEE Computer, 39(1):40-48, 2006.
- [4] Clearsy System Engineering, AtelierB home page, http://www.atelierb.eu/en/
- [5] Clearsy System Engineering, *B Method home page*, http://www.methode-b.com/en/
- [6] Hall, A., Seven Myths of Formal Methods, IEEE Software, 7(5):11-19, 1990.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered important by the software companies, for improving the reliablity of the resulting software products.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	- knowledge of the fundamental FM concepts and techniques taught during lectures - ability to specify a basic system in B and manually prove its consistency - ability to apply a model checking algorithm on a simple example	Written exam	50%
10.5 Seminar/lab activities		Scientific FM paper presentation	25%
	given system inside AtelierB - ability to use the tool for type checking the specification, generate the associated proof obligations and discharge them	B Project: B specification and consistency checking using AtelierB of an informally specified system	25%
10.6 Minimum perfo			
Grade at least 5 (from a scale of 1 to 10) at written exam, paper and project.			

Date	Signature of course coordinator	Signature of seminar coordinator
22.04.2019	Lect. PhD. Vladiela Petrașcu	Lect. PhD. Vladiela Petrașcu
Date of approval	Signature of	the head of department
	••••	