SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University, Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics and Computer Science - English

2. Information regarding the discipline

2.1 Name of the di	scipl	ine	Optimization Techniques				
2.2 Course coordin	coordinator Prof. Nicolae Popovici, Ph.D. Habil.						
2.3 Seminar coord	inato	r	Prof. Nicolae Popovici		, Ph.D. I	Habil.	
2.4. Year of study	3	2.5 Semester	6 2.6. Type of		Exam	2.7 Type of	Compulsory
			evaluation			discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar	12	
Time allotment:						
Learning using manual, course suppor	rt, bibl	iography, course notes			24	
Additional documentation (in libraries, on electronic platforms, field documentation)					6	
Preparation for seminars/labs, homework, papers, portfolios and essays					12	
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours 64						
3.8 Total hours per semester		100				

4

4. Prerequisites (if necessary)				
4.1. curriculum	Algebra 1 (Linear Algebra)			
	• Mathematical Analysis 2 (Differential Calculus on R ⁿ)			
4.2. competencies	Ability to use basic theoretical notions and practical methods of linear			
	algebra and mathematical analysis.			

5. Conditions (if necessary)

3.9 Number of ECTS credits

5.1. for the course	Beamer projector
5.2. for the seminar /lab activities	Standard infrastructure

6. Specific competencies acquired

0. Speen	ic competencies acquired
nal cies	C1.4 Identify the appropriate mathematical models and methods for solving real-life problems.
Professional competencies	C3.1 Identify the fundamental notions and results needed to develop numerical algorithms.
ofe.	
P1	
×.	CT1 Work effectively and rigorously; adopt a responsible attitude towards science and
sal	learning; use the own creative potential; obey the rules and principles of professional ethic.
ver	
Transversal competencies	
Tr coi	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study the mathematical foundations of several important optimization techniques, which are currently used in Operational Research.
7.2 Specific objective of the discipline	 Students should acquire knowledge about: Convex analysis; Linear optimization; Matrix game theory; Convex optimization.

8. Content

8.1 Course	Teaching methods	Remarks
1. Optimization problems in general setting; Classical	Direct instruction,	
models.	mathematical proof,	
	exemplification	
2. Level sets; Existence and unicity of optimal	Direct instruction,	
solutions.	mathematical proof,	
	exemplification	
3. Convex sets; Extreme points.	Direct instruction,	
	mathematical proof,	
	exemplification	
4. Convex functions and some properties of their	Direct instruction,	
extrema.	mathematical proof,	
	exemplification	
5. Linear optimization problems; Duality theorems.	Direct instruction,	
	mathematical proof,	
	exemplification	
6. Primal feasible bases, dual feasible bases, and	Direct instruction,	
optimal bases.	mathematical proof,	
	exemplification	
7. The Simplex Algorithm in primal form.	Direct instruction,	
	mathematical proof,	
	exemplification	
8. The Simplex Algorithm in dual form.	Direct instruction,	
	mathematical proof,	
	exemplification	

9. Dual problems and extended problems - involving	Direct instruction,
additional constraints.	mathematical proof,
	exemplification
10. Matrix games.	Direct instruction,
	mathematical proof,
	exemplification
11. The relationship between the matrix games and the	Direct instruction,
linear optimization problems.	mathematical proof,
	exemplification
12. Convex optimization problems.	Direct instruction,
	mathematical proof,
	exemplification

Bibliography

1. BOYD, S., VANDENBERGHE, L.: Convex Optimization, Cambridge University Press, 2004.

- 2. BRECKNER, B.E., POPOVICI, N., Convexity and Optimization. An Introduction, EFES, Cluj-Napoca, 2006.
- 3. BRECKNER, W.W., Cercetare operațională, Universitatea Babeș-Bolyai, Cluj-Napoca, 1981.

4. POPOVICI, N., Optimizare vectoriala, Casa Cartii de Stiinta, Cluj-Napoca, 2005.

- 5. MORDUKHOVICH, B.S., NAM, N.M., An easy path to convex analysis and applications, Morgan & Claypool Publishers, Milton Keynes, 2014.
- 6. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, Boston, 2008.

8.2 Seminar	Teaching methods	Remarks
1-2. Special classes of convex sets.	Problem-based	
	instruction, debate,	
	mathematical proofs	
3-4. Convex functions; Generalized convexity.	Problem-based	
	instruction, debate,	
	mathematical proofs	
5-6. Optimization problems solved by the Simplex	Problem-based	
Algorithm in primal form.	instruction, debate,	
	mathematical proofs	
7-8. Optimization problems solved by the Simplex	Problem-based	
Algorithm in dual form.	instruction, debate,	
	mathematical proofs	
9-10. Matrix games.	Problem-based	
	instruction, debate,	
	mathematical proofs	
11-12. Convex optimization problems.	Problem-based	
	instruction, debate,	
	mathematical proofs	

Bibliography

1. BRECKNER, B.E., POPOVICI, N., Probleme de analiza convexa in Rⁿ. Casa Cartii de Stiinta, Cluj-Napoca, 2003.

- 2. BRECKNER, B.E., POPOVICI, N., Probleme de cercetare operationala, EFES, Cluj-Napoca, 2006.
- 3. BRECKNER, W.W., DUCA, D., Culegere de probleme de cercetare operationala, Universitatea Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1983.

4. DUREA, M., O introducere in teoria optimizarii neliniare, Tehnopress, Iasi, 2012.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course ensures a solid theoretical background, according to national and international standards, within bachelor programmes, on optimization theory, operations research, management, etc.
- The optimization techniques are currently applied in industry, medicine, insurance, etc.

10. Evaluare

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Knowledge of theoretical concepts and capacity to rigorously prove the main theorems; Ability to solve practical exercises and theoretical problems 	Written Exam	75%
10.5 Seminar/lab activities	Attendance and active class participation	Continuous evaluation	25%
10.6 Minimum performance	e standards		
The final grade should be gr	reater than or equal to 5.		

Date	Signature of course coordinator	Signature of seminar coordinator
03.05.2019	Prof. Nicolae Popovici, Ph.D. Habil.	Prof. Nicolae Popovici, Ph.D. Habil.

Date of approval

.....

Signature of the head of department

Prof. Octavian Agratini, Ph.D.