SYLLABUS

P. 69
Babes-Bolyai University
Mathematics and Computer Science
Mathematics
Mathematics
Bachelor
Mathematics and Computer Science

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e di	scipline	Astronomy				
2.2 Course coordinator			Conf. Dr. Cristina Blaga				
2.3 Seminar coordinator Conf. Dr. Cristina Blaga							
2.4. Year of	3	2.5	5	2.6. Type of	Exam	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	14/14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					4
Evaluations				4	
Other activities:				2	
3.7 Total individual study hours		94			1
3.8 Total hours per semester		150			

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	• Acces to the astronomical instruments from the Astronomical
activities	Observatory of the BBU.

6. Specific competencies acquired

-	
	C1.1 The ability to identify concepts, theories and use of specific description language
Professional competencies	C2.1 The ability to identify basic concepts used in the description of specific phenomena and processes C4.5 The ability to produce a mathematical model for a certain problem.
Transversal competencies	CT1. Applying rigorous and efficient work rules, displaying a responsible attitude towards the scientific and educational and creative order to maximize their potential in specific situations with respect to the basic principles and norms of professional ethics

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquiring theoretical and practical knowledge necessary for understanding the principles and methods of astronomy.
7.2 Specific objective of the discipline	 Introduction of basic notions about spherical astronomy (celestial sphere, positions of celestial bodies on the celestial sphere, real and apparent motion of celestial bodies), solar system and stellar properties deduced from observations. Assimilating this knowledge allows understanding of phenomena observed in the sky, such as sunrise and sunset of celestial bodies, solar and Moon eclipses, their visibility from a given place and other astronomical phenomena.

8. Content

8.1 Course	Teaching methods	Remarks
1. The subject and branches of Astronomy.	The lecture,	
Spherical Astronomy. Celestial coordinates:	description,	
horizontal, equatorial, ecliptic and galactic	exemplification using	
system.	multimedia	
2. Precession and nutation. Changing the	The lecture,	
equatorial coordinates due to precession and	description,	
nutation. Sidereal time, true solar time, average	exemplification using	
solar time, equation of time.	multimedia	
3. Transformation of sidereal time in mean solar	The lecture,	
time and vice-versa. Time and longitude. Year	description,	
(tropic, calendar, sidereal and anomalistic).	exemplification using	
Precise measurement of time.	multimedia	
4. Fundamental astronomy. Determining absolute	The lecture,	
and relative position of a star. Fundamental	description,	
star catalogs. Phenomena that change the	exemplification using	
position of heavenly bodies in the sky:	multimedia	
astronomical refraction.		
5. The aberration of light. Parallax, parsec	The lecture,	
distance measurement unit used in astronomy.	description,	
Reducing observations on the positions of the	exemplification using	

stars.	multimedia
6. General description of the solar system. Two-	The lecture,
body problem. Kepler's Laws. The orbits of the	description,
planets. Earth's orbit. Astronomical seasons.	exemplification using
1	multimedia
7. The orbits of the Earth artificial satellites and	The lecture,
cosmic rockets. Earth-Moon system.	description,
Movement around the Earth. Phases of the	exemplification using
Moon. Moon's rotation on its axis.	multimedia
	The lecture,
8. Solar and Moon eclipses. Physical data about	,
planets. Energy balance and surface	description,
temperature planets.	exemplification using
	multimedia
9. Chemical composition and stability of	The lecture,
planetary atmospheres. The interior of planets.	description,
Roche limit and planetary rings.	exemplification using
	multimedia
10. The landforms observed on the surface of	The lecture,
terrestrial planets. Large satellites of the giant	description,
planets.	exemplification using
r	multimedia
11. Asteroids. Comets. Condition storm, meteors	The lecture,
and meteorites. Theories on solar system	description,
formation.	
Iomation.	exemplification using
	multimedia
12. Physical properties of stars. Luminosity.	The lecture,
Brightness. Apparent and absolute magnitude.	description,
	exemplification using
	multimedia
13. The mass, radius and sizes of stars and other	The lecture,
characteristics derived from them (average	description,
density and gravitational acceleration on the	exemplification using
surface of the star).	multimedia
14. Spectral classification of stars. Observational	The lecture,
Hertzsprung-Russell Diagram. Mass-radius	description,
relation and mass-luminosity main sequence	exemplification using
stars-brightness near the sun.	multimedia
	manmoutu
Bibliography	Chui Nanaga 2001
1. BLAGA, C.: Sistemul nostru solar, Editura Albastra,	• •
2. ROY A.E., CLARKE D.: Astronomy:Principles and H	
3. URECHE V.: Universul, Astronomie, vol. I, Editura I	
4. UNSOLD A., BASCHEK B.: Der neue Kosmos, Spri	
5. WEIGERT C., WENDKLER H., WISOTZKI L.: Astr	
8.2 Seminar / laboratory	Teaching methods Remarks
1. Seminar (2 hours) Spherical Trigonometry.	Description,
Spherical triangle. Gauss Formulae.	explanation,
	conversation,
	individual study and /
	or team.
2. Laboratory (2 hours) Boreal sky map. The	Description,
distribution of stars in the constellations and	explanation,
their recognition by using alignments. The first	conversation,
astronomical observations.	individual study and /
asu ononnucar ouser valions.	-
2. Coming (2 kours) Colorial l'	or team.
3. Seminar (2 hours) Celestial coordinates.	Description,

Coordinates Transformations.	explanation,
	conversation,
	individual study and /
	or team.
4. Laboratory (2 hours) Julian date corresponding	Description,
to a given calendar date. Calculate the number	explanation,
of days in a given period with the aid of julian	conversation,
date.	individual study and /
	or team.
5. Seminar (2 hours) Sidereal time of rising and	Description,
setting of a star observed from a given	explanation,
geographical latitude. Azimuth of rising and	conversation,
setting point of a star.	individual study and /
	or team.
6. Laboratory (2 hours) Refracting and reflecting	Description,
telescopes. Astronomical observation through	explanation,
an astronomical instrument (different	conversation,
appearance of planets, stars and diffuse objects	individual study and /
through the instrument).	or team.
7. Seminar (2 hours) Time (sidereal, true and	Description,
mean solar time). The relations of	explanation,
transformation of sidereal in mean solar time	conversation,
and reverse.	individual study and /
	or team.
8. Laboratory (2 hours) Observing the Moon	Description,
through a telescope.	explanation,
	conversation,
	individual study and /
	or team.
9. Seminar (2 hours) The motion of the solar	Description,
system bodies. Kepler Laws.	explanation,
	conversation,
	individual study and /
	or team.
10. Laboratory (2 hours) A plan for astronomical	Description,
observations for a given calendar date. The	explanation,
plan must contain information about Sun (set	conversation,
and rise), twilight, visibility of Moon and	individual study and /
planets, constellations at 20 UT gathered using	or team.
a sky map, a celestial mapping program or	
internet sources.	
11. Seminar (2 hours) The motion of small bodies	Description,
from the solar system.	explanation,
	conversation,
	individual study and /
	or team.
12. Laboratory (2 hours) Applications of the stellar	Description,
magnitudes, distance units, observational facts.	explanation,
	conversation,
	individual study and /
	or team.
13. Seminar (2 hours) Asteroids, comets, meteors	Description,
and meteoroids.	explanation,
	conversation,
	individual study and /

	or team.	
14. Laboratory (2 hours) Observing the Sun.	Description,	
	explanation,	
	conversation,	
	individual study and /	
	or team.	

Bibliography

1. CUREA, I.: Atlas stelar descriptiv, Tipografia Universitatii Timisoara, 1970.

2. KARTUNEN, H., KROGER, P., OJA, H., POUTANEN, M., DONNER, K., J., - Fundamental

Astronomy, Springer, Berlin, Heidelberg, 1994.

3. PAL A., POP V., URECHE V.: Astronomie, Culegere de probleme, Presa Universitara clujeana, Cluj-Napoca, 1998.

4. POP V., POP D.: Trigonometrie plana si trigonometrie sferica, Presa Universitara clujeana, Cluj-Napoca, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The notions acquired in the course enables graduates to propose astronomy as a subject in the curriculum according to the school, student circles to organize and / or participate in the preparation of students wishing to participate in school competitions of Astronomy.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade
10.4 Course	Knowledge of the concepts introduced and their use in solving problems	Written examination (theory and problems)	3/5
10.5 Seminar/lab activities	The application of concepts learned in theoretical or practical problem	Continuous evaluation of student participation in teaching activities	2/5
10.6 Minimum performance standards			
> The students must solve correctly and in due time the homework. At the examination they must show			
that they understood the concepts introduced and can work with them.			

DateSignature of course coordinatorSignature of seminar coordinator24th of April 2019Conf. Dr. Cristina BlagaConf. Dr. Cristina Blaga

Date of approval

Signature of the head of department

.....

Prof. Dr. Octavian Agratini