SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Probability Theory						
2.2 Course coordinator Prof. PhD. Agratini Octavian						
2.3 Seminar coordinator Assoc. Prof. PhD. Roşca			Natalia			
2.4. Year of	2 2.5	4	2.6. Type of E 2.7 Type of Compulsory /			
study	Semester		evaluation		discipline	Fundamental

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					6
Evaluations					7
Other activities:					-

3.7 Total individual study hours	44
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis 1, Mathematical Analysis 2, Algebra
4.2. competencies	Limit and Integral Calculus, Set Theory

5. Conditions (if necessary)

5.1. for the course	Lecture room with blackboard and video projector
5.2. for the seminar/lab activities	Seminar room with blackboard

6. Specific competencies acquired

l competencie	 C1.1. Identification of notions, description of theories and use of specific language C2.3. Application of appropriate theoretical models of analysis for solving given problems
Transversal	CT2. Efficient development of group work activities

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquire basic knowledge of Probability Theory, with focus on theoretical aspects as well as applications
7.2 Specific objective of the discipline	 Application of classical probabilistic models to solve real life problems Become familiar with classical probability distributions Know the role of sequences of random variables in the study of social phenomena

8. Content

8.1 Course	Teaching methods	Remarks
1. Experiments and events. Sigma fields	Interactive exposureExplanation	
	 Conversation 	
	Didactical	
	demonstration	
2. Probability function. Conditional probability.		
Independence of events	• Interactive exposure	
	Explanation	
	• Conversation	
	Didactical	
	demonstration	
3. Classic probabilistic models (Samplings with /		
without replacement, Poisson, Pascal, Geometric)	• Interactive exposure	
	• Explanation	
	• Conversation	
	Didactical	
	demonstration	
4. Sigma - fields and infinite probability spaces.	• Interactive exposure	
Properties	• Explanation	
	• Conversation	
	Didactical	
	demonstration	
5. Random variables: definition, properties.	• Interactive exposure	
Discrete random variables	• Explanation	
	• Conversation	
	I	

6. Cumulative distribution function: definition,	Interactive exposure
properties	Explanation
	Conversation
	Didactical
	demonstration
7. Probability density function: definition,	Interactive exposure
properties. Continuous random variables	Explanation
	Conversation
	Didactical
	demonstration
8. Random vectors, joint distribution function, joint	Interactive exposure
density function. Marginal distributions and	Explanation
marginal densities. Properties	Conversation
	Didactical
	demonstration
9. Operations with continuous random variables:	Interactive exposure
sum, multiplication, division.	• Explanation
	Conversation
	Didactical
	demonstration
10. Numerical characteristics of random variables:	Interactive exposure
expectation, variance, moments, covariance,	• Explanation
correlation coefficient	Conversation
	Didactical
	demonstration
11. Characteristic function. Properties	Interactive exposure
•	Explanation
	• Conversation
	Didactical
	demonstration
12. Sequences of random variables. Types of	
convergence	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
13. Laws of large numbers. Weak law of large	Interactive exposure
numbers. Strong law of large numbers	Explanation
e e	Conversation
	Didactical
	demonstration
14. Lindeberg condition and Central Limit Theorem	
Moivre-Laplace theorem.	• Explanation
1.101110 Euplace dicoloni.	Conversation
	Didactical
	demonstration

1. AGRATINI, O., Capitole speciale de matematici, Lito., Univ. Babeș-Bolyai, Cluj-Napoca, 1996.

- 2. LISEI, H., *Probability Theory*, Casa Cărții de Știință, Cluj-Napoca, 2004.
- 3. LISEI, H., MICULA, S., SOOS, A., *Probability Theory through Problems and Applications*, Presa Universitară Clujeană, 2006.
- 4. SHELDON, R., A First Course in Probability, 8th edition, Pearson Prentice Hall, 2010.

8.2 Seminar	Teaching methods	Remarks
1. Euler's Gamma and Beta functions. Properties.	Explanation,	
Combinatorics	conversation,	
	examples.	
2. Probability calculus on a finite field	Explanation,	
	conversation,	
	examples.	
3. Conditional probability. Independent events.	Explanation,	
Bayes formula	conversation,	
	examples.	
4. Classical probabilistic models	Explanation,	
	conversation,	
	examples.	
5. Geometric probability. Exercises	Explanation,	
	conversation,	
	examples.	
6. Discrete random variables. Operations and	Explanation,	
exercises	conversation,	
	examples.	
7. Continuous random variables. Operations and	Explanation,	
exercises	conversation,	
	examples.	
8. Random vectors. Exercises	Explanation,	
	conversation,	
	examples.	
9. Numerical characteristics of random variables	Explanation,	
	conversation,	
	examples.	
10. Classical inequalities for numerical	Explanation,	
characteristics of random variables	conversation,	
11.01	examples.	
11. Characteristic function. Exercises	Explanation,	
	conversation,	
10.0	examples.	
12. Sequences of random variables. Exercises	Explanation,	
	conversation,	
12.0	examples.	
13. Convergence of sequences of random	Explanation,	
variables	conversation,	
14 12 24 1	examples.	
14. Limit theorems. Applications	Explanation,	
	conversation,	
	examples.	

Bibliography LISEI, H., MICULA, S., SOOS, A., *Probability Theory through Problems and Applications*, Presa Universitară Clujeană, 2006.

Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of the course is important because it covers basic concepts and topics in this field.
- The course exists in the studying program of all major universities in Romania and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Know the basic principles	Written exam.	80%		
	in Probability Theory				
	·				
10.5 Seminar	Be able to apply course	Continuous observation	20%		
	concepts on solving	during the semester,			
	problems in this field	seminar participation.			
10.6 Minimum performance standards					
• At least grade 5 (from a scale of 1 to 10) at the written exam					

Date	Signature of course coordinator	Signature of seminar coordinator
18 April 2019	Prof. PhD. Agratini Octavian	Assoc. Prof. PhD. Roșca Natalia
	Date of approval	Signature of the head of department
	April 2019	Prof. PhD. Agratini Octavian