SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University, Cluj-Napoca
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics and Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline C	omplements of Mathematical Analysis
2.2 Course coordinator	Lect. dr. Berinde Stefan
2.3 Seminar coordinator	Lect. dr. Berinde Stefan
2.4. Year of study 2 2.5 4	2.6. Type of VP 2.7 Type of Op.
Semester	evaluation discipline

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:	·				hours
Learning using manual, course suppo	rt, bib	liography, course notes	5		36
Additional documentation (in librarie	s, on (electronic platforms, fie	eld doc	cumentation)	13
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					10
Evaluations					30
Other activities:					
3.7 Total individual study hours	119				
3.8 Total hours per semester	175				
3.9 Number of ECTS credits	7				

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis I	
4.2. competencies	 Understanding calculus on the real axis 	

5. Conditions (if necessary)

5.1. for the course	Class room with blackboard
5.2. for the seminar /lab	Class room with blackboard
activities	

6. Specific competencies acquired

	L
Professional	competencies

- C1.5 Elaborarea unor proiecte si lucrari de prezentare a unor rezultate si metode matematice.
 - C5.4 Evaluarea comparativa si utilizarea eficienta a diferitelor metode de demonstratie

	<u>ة</u>
ersa	•=
S	٦.
	_
e	- Le
>	+
SV	a
Ĭ	2
=	=
Œ	Ξ
	- =
	9

CT2. Desfasurarea eficienta si eficace a activitatilor organizate in echipa

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Complementary results from the field of classical analysis on the real axis
7.2 Specific objective of the discipline	 introduction to theory of continued fractions solving linear recurrences by methods of characteristic equation and generating function computation techniques based on operations with power series study of some remarcable series and products, and their connection with Riemann zeta function applications to number theory and combinatorics

8. Content

8.1 Course	Teaching methods	Remarks
1. A short history of mathematical analysis	interactive exposure, explanation,	
	didactical demonstration	
2. Real numbers – irrationality and	interactive exposure, explanation,	
transcendence	didactical demonstration	
3. Real numbers – representation as continued	interactive exposure, explanation,	
fraction	didactical demonstration	
4. Applications of continued fractions to	interactive exposure, explanation,	
number theory	didactical demonstration	
5. Linear recurrent sequences	interactive exposure, explanation,	
	didactical demonstration	
6. Nonlinear recurrent sequences	interactive exposure, explanation,	
	didactical demonstration	
7. Remarcable recurrent sequences	interactive exposure, explanation,	
	didactical demonstration	
8. Extreme limits of a sequence	interactive exposure, explanation,	
	didactical demonstration	
9. Operations with power series	interactive exposure, explanation,	
	didactical demonstration	
10. Method of generating function	interactive exposure, explanation,	
	didactical demonstration	
11. Applications of recurrences to combinatoric	sinteractive exposure, explanation,	
	didactical demonstration	
12. Riemann zeta function	interactive exposure, explanation,	
	didactical demonstration	
13. Exam preparation	interactive exposure, explanation,	
	didactical demonstration	

14. Due examination

Bibliography

- 1. Hardy G.H. et al.: An introduction to the theory of numbers, Oxford University Press, 2008
- 2. Mickens R.E.: Difference equations. Theory, applications and advanced topics, CRC Press, 2015
- 3. Wilf H.S.: generatingfunctionology, A.K. Peters Ltd., Massachusetts, 2006
- 4. Zorich V.A.: Mathematical Analysis I, Springer, 2004
- 5. ***: Pagina cursului Complemente de analiza matematica (notite de curs ale titularului), http://math.ubbcluj.ro/~sberinde/comp/

8.2 Sei	minar / laboratory	Teaching methods	Remarks
1.	Classic inequalities	project exposure by student team	
2.	Remarcable numbers as limits of sequences	project exposure by student team	
3.	Remarcable numbers as limits of sequences	conversation, exercise and	
	(exercises)	didactic proof	
4.	Arithmetic-geometric mean. Gauss formula	project exposure by student team	
5.	Arithmetic-geometric mean. Gauss formula	conversation, exercise and	
	(exercises)	didactic proof	
6.	Toeplitz theorem and applications	project exposure by student team	
7.	Toeplitz theorem and applications	conversation, exercise and	
	(exercises)	didactic proof	
8.	Stirling formula	project exposure by student team	
9.	Stirling formula (exercises)	conversation, exercise and	
		didactic proof	
10.	Euler sum and Bernoulli numbers	project exposure by student team	
11.	Euler sum and Bernoulli numbers	conversation, exercise and	
	(exercises)	didactic proof	
12.	. Infinite products	project exposure by student team	
13.	Infinite products (exercises)	conversation, exercise and	
		didactic proof	
14.	. Euler's Gamma function	project exposure by student team	

Bibliography

- 1. Cobzas S.: Analiza matematica (Calcul diferential), Presa Universitara Clujeana, 1997
- 2. Duren P.: Invitation to Classical Analysis, AMS, 2012
- 3. Kaczor W.J., Nowak M.T.: Problems in Mathematical Analysis, vol. I si II, AMS, 2001
- 4. Mercer P.R.: More calculus of a single variable, Springer, 2014
- 5. Siretchi, Gh.: Calcul diferential si integral, vol. I si II, Editura Stiintifica si Enciclopedica, 1985
- 6. ***: Pagina cursului Complemente de analiza matematica (notite de curs ale titularului), http://math.ubbcluj.ro/~sberinde/comp/
- 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• This lecture is useful for teacher and research candidates in mathematics, enriching their knowledge in classical mathematical aanalysis. More specifically, we address new methods and results which might be useful later for a master degree preparation in mathematics or a related field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowledge of basic	Written exam	50
	concepts and results,		
	problem solving		
10.5 Seminar/lab activities	Individual project evaluation	Continous observation,	50
		dialogue	
10.6 Minimum performance standards			
➤ Grade 5			

Date	Signature of course coordinator	Signature of seminar coordinator	
29 april 2019	lect.dr. Berinde Stefan	lect.dr. Berinde Stefan	
Date of approval	Signature	of the head of department	
	prof.dr. Oo	etavian Agratini	