SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University Cluj-Napoca			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Mathematics			
1.4 Field of study	Mathematics			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Mathematics and Computer Science			
110	Maintinaites and Computer Science			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Theoretical Mechanics							
2.2 Course coordinator Associate Professor Teodor Grosan							
2.3 Seminar co	2.3 Seminar coordinator Associate Professor Teodor Grosan						
2.4. Year of	2.4. Year of 2 2.5 4 2.6. Type of E 2.7 Type of I					DF/Compulsory	
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 co	urse	2	3.3	2 sem
					seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 co	urse	28	3.6	28
					seminar/laboratory	
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes					22	
Additional documentation (in libraries, on electronic platforms, field documentation)						12
Preparation for seminars/labs, homework, papers, portfolios and essays					20	
Tutorship					7	
Evaluations					8	
Other activities:					-	
3.7 Total individual study hours 69						

5.7 Total mulvidual study nouis	09
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 2 (Differential and Integral Calculus in R ⁿ); Analytical
	Geometry; Differential Geometry of Curves and Surfaces;
	Differential Equations
4.2. competencies	• There are useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

0. Speen	c competencies acquired
	• C2.3 Application of theoretical methods of analysis adequate to the issue data.
ual ies	• C4.3 Construction of mathematical model using methods, techniques and appropriate tools.
Professional competencies	Knowledge of the basic concepts of Mechanics
Profe	• Ability to understand and use fundamental results in geometry, differential and integral
H 5	calculus, and the theory of differential equations to study particular problems of motion and to provide applications.
	• CT1 Applying rigorous and effective work rules, manifest responsible attitude to science and
	teaching, and creative order to maximize their potential in specific situations, the principles and rules of professional ethics.
sal	• Ability to apply the studied concepts, to inform themselves, to work independently or in a
Transversal competencies	team in order to carry out studies and to solve complex problems.
Transversal competencie	• Ability for continuous self-perfecting and study.

7.1 General objective of the • Knowledge, understanding and use of main concepts and results of discipline Mechanics. 7.2 Specific objective of the Acquiring basic and advanced knowledge in Mechanics. • discipline Acquiring basic concepts of kinematics of material point and kinematics • of rigid body. Acquiring basic concepts of dynamics of material point and of systems of • material points. Understanding fundamental problems and results in rigid body dynamics. • • Ability to apply and use mathematical models to describe and analyze problems of Mechanics. Knowledge, understanding and use of various topics in mathematics to • study problems of Mechanics.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1	Course	Teaching methods	Remarks
1.	Introduction. Fundamental notions of Mechanics.	Lectures, modeling, didactical	
	Kinematics of material point: Trajectory, motion	demonstration, conversation.	
	equations, velocity and acceleration of material point.	Presentation of alternative	
	Kinematics of material point in Cartesian and intrinsic	explanations.	
	coordinates (Frénet's coordinate system).		
2.	Curvilinear coordinates. Examples of orthogonal	Lectures, modeling, didactical	
	curvilinear coordinates: cylindrical, polar, and	demonstration, conversation.	

	spherical coordinates.	Presentation of alternative explanations.
3.	Kinematics of rigid body: Euler's angles. Motion	Lectures, modeling, didactical
	equations. Poisson's formulas.	demonstration, conversation. Presentation of alternative
		explanations.
4.	The distribution of velocity and acceleration in rigid	Lectures, modeling, didactical
	body. Translational motion of rigid body. Kinematics	demonstration, conversation.
	of rotation of rigid body around a fixed axis.	Presentation of alternative
	Kinematics of rotation of rigid body around a fixed	explanations.
5	point. General motion of free rigid body. Helical motion.	Lectures, modeling, didactical
5.	Plane motion of rigid body (I): Pure rotation.	demonstration, conversation.
	Instantaneous centre of rotation.	Presentation of alternative
	instantaneous centre of rotation.	explanations.
6.	Plane motion of rigid body (II): Curves described by	Lectures, modeling, didactical
	the instantaneous centre of rotation. Kinematics of	demonstration, conversation.
	relative motion: definitions, distribution of velocitis	Presentation of alternative
	and accelerations, Coriolis' formulas, Coriolis' Theorem.	explanations.
7.	Dynamics of material point: Newton's laws of	Lectures, modeling, didactical
	Dynamics. Newton's equation. Dynamics of free	demonstration, conversation.
	material point.	Presentation of alternative
0		explanations.
8.	General theorems of dynamics of material point.	Lectures, modeling, didactical
		demonstration, conversation. Presentation of alternative
		explanations.
9.	Motion under the influence of a central force. Binet's	Lectures, modeling, didactical
	equation. The case when the central force depends	demonstration, conversation.
	only on the distance: $f = f(r)$.	Presentation of alternative
10	The universal office law Newton's making	explanations.
10	. The universal attraction law. Newton's problem.	Lectures, modeling, didactical demonstration, conversation.
		Presentation of alternative
		explanations.
11.	. Dynamics of material point subject to constraints:	Lectures, modeling, didactical
	The motion on a fixed surface, or on a fixed curve.	demonstration, conversation.
	Mathematical pendulum.	Presentation of alternative
12	. Dynamics of systems of material points. General	explanations. Lectures, modeling, didactical
12	theorems of dynamics of systems of material points.	demonstration, conversation.
	and the of a granines of systems of material points.	Presentation of alternative
		explanations.
13	. General theorems of the motion of systems of material	Lectures, modeling, didactical
	points around their mass center. Angular momentum	demonstration, conversation.
	and kinetic energy in the fixed axis rigid body motion. Moment of inertia.	Presentation of alternative explanations.
14	Dynamics of the motion of a rigid body about a fixed	Lectures, modeling, didactical
17	point. Considerations on the general motion of a free	demonstration, conversation.
	rigid body.	Presentation of alternative
		explanations.
Bi	bliography	

1. Kohr, M., Special Topics in Mechanics, Cluj University Press, Cluj- Napoca, 2005 (in Romanian)

- 2. Brãdeanu, P., *Theoretical Mechanics*, Vols. 1 and 2, Babeş-Bolyai University Press, Cluj-Napoca, 1988 (in Romanian).
- 3. Iacob, C., Theoretical Mechanics, Editura Didactică și Pedagogică, Bucharest, 1980 (in Romanian)
- 4. Dragoș, L., *Principles of Analytical Mechanics*, Technical Publishing House, Bucharest, 1976 (in Romanian)
- Goldstein, H., Poole, C., Safko, J., *Classical Mechanics*, Reading, MA: Addison-Wessley Publ. Co. (3rd edition), 2014
- 6. Bose, S., Chattoraj, D., Elementary Analytical Mechanics, Alpha Science International Ltd. 2000
- 7. Aaron, F.D., Analytical Mechanics, BIC ALL Publishing House, Bucharest, 2002 (in Romanian)
- 8. Landau, L.D., Lifshitz, E.M., Mechanics, Elsevier-Butterworth-Heinemann, (3rd edition), 2005
- 9. Russo, R., Classical Problems in Mechanics, Aracne, Roma, 1997

8 7	Seminar	Teaching methods	Remarks
	Kinematics of material point in Cartesian and	Description of arguments and	Kelliarks
1.	orthogonal curvilinear coordinates (cylindrical,	proofs for solving problems.	
	shperical, and polar coordinates). Motion in the	Direct answers to students.	
	Frénet coordinate system (I).	Homework assignments.	
2.	Kinematics of material point in Cartesian and	Description of arguments and	
2.	orthogonal curvilinear coordinates (cylindrical,	proofs for solving problems.	
	shperical, and polar coordinates). Motion in the	Direct answers to students.	
	Frénet coordinate system (II).		
		Homework assignments.	
3.	Translational motion of rigid body. Kinematics	Description of arguments and	
	of rotation of rigid body around a fixed axis.	proofs for solving problems.	
		Direct answers to students.	
		Homework assignments.	
1	Kinematics of rotation of rigid body around a fixed	Description of arguments and	
4.	point. Kinematics of free rigid body.		
	point. Kinematics of free fight body.	proofs for solving problems.	
		Direct answers to students.	
		Homework assignments.	
5.	Helical motion. Plane motion of rigid body (I).	Description of arguments and	
		proofs for solving problems.	
		Direct answers to students.	
		Homework assignments.	
6	Plane motion of rigid body (II). Kinematics of	Description of arguments and	
0.	relative motion of material point.		
	relative motion of material point.	proofs for solving problems.	
		Direct answers to students.	
		Homework assignments.	
7.	Dynamics of free material point. Motion of	Description of arguments and	
	material point in a field of conservative forces.	proofs for solving problems.	
		Direct answers to students.	
		Homework assignments.	
8.	General theorems of dynamics of material point.	Description of arguments and	
		proofs for solving problems.	
		r for sorting proceeding.	

	Direct answers to students. Homework assignments.
9. Central forces (I).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
10. Central forces (II).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
11. Dynamics of material point subject to constraints. Dynamics of relative motion of material point.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
12. Dynamics of systems of material points. Moment of inertia.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
 General theorems of dynamics of systems of material points (I). 	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
14. General theorems of dynamics of systems of material points (II).Dynamics of the motion of a rigid body about a fixed point.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.

Bibliography

- 1. Kohr, M., Special Topics in Mechanics, Cluj University Press, Cluj- Napoca, 2005 (in Romanian)
- 2. Turcu, A., Kohr-Ile, M., *Collection of Theoretical Mechanics Problems*, Babeş- Bolyai University Press, Cluj-Napoca, 1993 (in Romanian)
- 3. Bradeanu, P., Theoretical Mechanics, Vols. 1 and 2, Babeş- Bolyai University Press, Cluj-Napoca, 1988
- 4. Bradeanu, P., Pop, I., Bradeanu D., Technical Publishing House, Bucharest, 1979 (in Romanian)
- 5. Brãdeanu, P., Pop, I., Stan, I., Turcu, A., *Collection of Theoretical Mechanics Problems*, Babeş- Bolyai University Press, Cluj-Napoca, 1976 (in Romanian)
- 6. Aaron, F.D., Analytical Mechanics, BIC ALL Publishing House, Bucharest, 2002 (in Romanian)
- Goldstein, H., Poole, C., Safko, J., *Classical Mechanics*, Reading, MA: Addison-Wessley Publ. Co. (3rd edition), 2014
- 8. Landau, L.D., Lifshitz, E.M., Mechanics, Elsevier-Butterworth-Heinemann, (3rd edition), 2005
- 9. Russo, R., Classical Problems in Mechanics, Aracne, Roma, 1997

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the applied mathematics plays an essential role. This discipline is useful in preparing future teachers and researchers in applied mathematics, as well as those who use mathematical models and methods of study in other areas (physics, chemistry, engineering, computer science).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Knowledge of concepts	Written exam at the end the	50%			
	and basic results	semester				
	Ability to justify by proofs					
	theoretical results					
10.5 Seminar/lab activities	Ability to apply concepts	A midterm written test.	50%			
	and results acquired in the					
	course in mathematical					
	modeling and analysis of					
	problems in Mechanics					
	There are valid the official					
	rules of the faculty					
	concerning the attendance					
	of students to teaching					
	activities					
10.6 Minimum performance standards						
> At least grade 5 (from a scale of 1 to 10) at both written exam.						

Date

Signature of course coordinator

Signature of seminar coordinator

1.05.2018

Associate Professor

Associate Professor

Teodor Grosan

Teodor Grosan

Date of approval

Signature of the head of department

Professor Octavian AGRATINI