SYLLABUS

1. Information regarding the programme				
"Babes-Bolyai" University Cluj-Napoca				
Faculty of Mathematics and Computer Science				
Mathematics				
Mathematics				
Bachelor				
Mathematics and Computer Science, English				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the dis	cipline	(en)	Applications of Geometry to Computer Science		o Computer Science /	
(ro)		Aplicatii ale geometriei in informatica				
2.2 Course coordinator		Assoc. Prof. Blaga Aurel Paul		aul		
2.3 Seminar coordin	nator		Assoc. Prof. Blaga Aurel Paul		aul	
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	VP	2.7 Type of discipline DS
2.8 Code of the discipline MLE0044			•		· · ·	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course		3.3	0+1+
				seminar/laboratory	1
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:			•		hours
Learning using manual, course support, bibliography, course notes					15
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					10
Evaluations					4
Other activities:				0	
3.7 Total individual study hours 69					
3.8 Total hours per semester 125					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•
4.2. competencies	•

5

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional	C3.1 The description of concepts, theories and models that are used in the application field.
competencies	C4.3 The identification of appropriate models and methods used for the solution of real life problems.
Transversal competencies	CT1 Applying the organized and efficient work rules, responsible attitudes towards the didactic- scientific field, for the creative valorisation of their own potential, observing the principles and norms of professional ethics

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Learning to understand the principles and methods of CAGD
7.2 Specific objective of the	To understand and be able to use
discipline	-the basic notions and results of differential geometry
	-the Bezier curves and surfaces
	-the B-spline curves and surfaces

8. Content

8.1 Course	Teaching methods	Remarks
1. Plane curves (parameterization, curvature, the Frenet frame)	Lecture, description, exemplification and questioning	
2. Space curves (parameterization, curvature, the Frenet frame)	Lecture, description, exemplification and questioning	
3. Parameterized surfaces	Lecture, description, exemplification and questioning	
4. The curvature of surfaces	Lecture, description, exemplification and questioning	
5. Geometric transformations of curve	Lecture, description, exemplification and questioning	
6. Geometric transformations of surfaces	Lecture, description, exemplification and questioning	

7. Polynomial curves 1 (Bezier)	Lecture, description,
	exemplification and
	questioning
8. Polynomial curves 2 (B-spline)	Lecture, description,
	exemplification and
	questioning
9. Polynomial surfaces 1 (Bezier tensor product	Lecture, description,
surfaces)	exemplification and
	questioning
10. Polynomial surfaces 2 (B-spline tensor product	Lecture, description,
surfaces)	exemplification and
	questioning
11. Polynomial surfaces 3 (triangular Bezier surfaces)	Lecture, description,
	exemplification and
	questioning
12. Bezier rational curves	Lecture, description,
	exemplification and
	questioning
13 B-spline rational curves	Lecture, description,
	exemplification and
	questioning
14. Bezier rational surfaces	Lecture, description,
	exemplification and
	questioning

Bibliography

- 1. Agoston, M.K.: Computer Graphics and Geometry: Mathematics, Springer, 2004
- 2. Argeri, M., Calio, F., Lazzari, A., Sesana, D.: Geometria vettoriale per la grafica, CittaStudi Edizioni, Milano, 2011
- 3. Beach, R.: An Introduction to the Curves and Surfaces of Computer-Aided Design, Van Nostrand Reinhold, 1991
- 4. Davies, A., Samuels, P.: An Introduction to Computational Geometry for Curves and surfaces, Clarendon Press, 1996
- 5. Farin, G.: Curves and Surfaces for CAGD, 5th edition, Academic Press, 2001
- 6. Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture, Ellis Horwood, 1979
- 7. Marsh, D.: Applied Geometry for Computer Graphics and CAD, 2nd edition, Springer, 2004
- 8. Rogers, D.: An Introduction to NURBS, Academic Press, 2001
- 9. Rogers, D.F., Adams, J.A.: Mathematical Elements for Computer Graphics, 2nd edition, McGraw Hill, 1990

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The reprezentation of plane curves		
	Description,	
	explanation,	
	conversation,	
	individual study and /	
	or teamwork	
2. The reprezentation of space curves		
	Description,	
	explanation,	
	conversation,	

	individual study and /
	or teamwork
3. The reprezentation of parameterized surfaces	Description, explanation, conversation, individual study and / or teamwork
4. The computation of the curvature of surfaces	Description, explanation, conversation, individual study and / or teamwork
5. Geometrical transformations of curves	
	Description, explanation, conversation, individual study and / or teamwork
6. Geometrical transformations of surfaces	
	Description, explanation, conversation, individual study and / or teamwork
7. Computations with Bezier curves. The	
graphical reprezentation	Description, explanation, conversation, individual study and / or teamwork
8. Computations with B-spline curves. The graphical reprezentation	Description, explanation, conversation, individual study and / or teamwork
9. Computations with tensor product Bezier	
surfaces. The graphical reprezentation	Description, explanation, conversation, individual study and / or teamwork
10. Computations with tensor product B-spline surfaces. The graphical reprezentation	Description, explanation, conversation, individual study and / or teamwork
 Computations with triangular Bezier surfaces. The graphical reprezentation 	Description, explanation, conversation, individual study and /

	or teamwork
12. Computations with rational Bezier curves. The	
graphical reprezentation	Description, explanation, conversation, individual study and / or teamwork
 Computations with rational B-spline curves. The graphical reprezentation 	Description, explanation, conversation, individual study and / or teamwork
14. Computations with rational Bezier surfaces.	
The graphical reprezentation	Description, explanation, conversation, individual study and / or teamwork

Bibliography

- 1. Agoston, M.K.: Computer Graphics and Geometry: Mathematics, Springer, 2004
- 2. Argeri, M., Calio, F., Lazzari, A., Sesana, D.: Geometria vettoriale per la grafica, CittaStudi Edizioni, Milano, 2011
- 3. Beach, R.: An Introduction to the Curves and Surfaces of Computer-Aided Design, Van Nostrand Reinhold, 1991
- 4. Davies, A., Samuels, P.: An Introduction to Computational Geometry for Curves and surfaces, Clarendon Press, 1996
- 5. Farin, G.: Curves and Surfaces for CAGD, 5th edition, Academic Press, 2001
- 6. Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture, Ellis Horwood, 1979
- 7. Marsh, D.: Applied Geometry for Computer Graphics and CAD, 2nd edition, Springer, 2004
- 8. Rogers, D.: An Introduction to NURBS, Academic Press, 2001
- 9. Rogers, D.F., Adams, J.A.: Mathematical Elements for Computer Graphics, 2nd edition, McGraw Hill, 1990

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Accumulated notions can be applied in computer graphics and CAGD.

10. Evaluation

			grade (%)
10.4 Course		Two tests	75%
10.5 Seminar/lab activities		Active participation in didactic activities and solving the homeworks received.	25%
10.6 Minimum performance standards			
In order to take the exam students must accumulate at the end of the semester at least 5 points for activity during the year.			

Date

Signature of course coordinator

Signature of seminar coordinator

.....

.April 30, 2019.....Assoc. Prof. Paul Blaga..

.....

Date of approval

Signature of the head of department

.....

.....