SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Matematics and Computer Science
1.3 Department	Departament of Matematics
1.4 Field of study	Matematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Matematics-Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Algebra 2 (Basic Algebraic Structures)				
2.2 Course coor	din	ator	Prof. PhD. Septimiu Crivei				
2.3 Seminar coordinator			Prof. PhD. Septimiu Crivei				
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					14
Evaluations					4
Other activities:					-
3.7 Total individual study hours 94					

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Professional competencies	C1.1 Idetifying the notions, describing the theories and using the specific language C2.3 Applying the adequate analytical theoretical methods to a given problem.
Transversal competencies	CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the the scientific domain and teaching training for an optimal and creative development of the personal potential in specific situations, respecting the deontological norms.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To introduce some basic notion and results regarding algebraic structures.
7.2 Specific objective of the discipline	To introduce some basics of group theory and ring theory.

8. Content

8.1 Course	Teaching methods	Remarks
1. Groups	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
2. Subgroups	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
3. Generated subgroup. Subgroup lattice	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
4. Group homomorphisms	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
5. Cyclic groups. Order of an element	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
6. Equivalence relations induced by a subgroup	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
7. Normal subgroups. Factor group	Interactive exposure	
	Explanation	

	· Commention
	• Conversation
	Didactical demonstration
8. Isomorphism theorems for groups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
9. Permutation groups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
10. Rings and fields	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
11. Subrings and subfields. Homomorphisms	Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
12. Ideals. Factor ring	Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
13. Special rings	Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
14. Rings of polynomials	Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
D'11' 1	

Bibliography

- 1. I.D. ION, N. RADU, Algebra (ed.4), Editura Didactica si Pedagogica, 1990.
- 2. S. CRIVEI, Basic Abstract Algebra, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2002, 2003.
- 3. W.J. GILBERT, W.K. NICHOLSON, Modern Algebra with Applications, John Wiley, 2004.
- 4. I. PURDEA, I. POP, Algebra, Editura GIL, Zalau, 2003.
- 5. J. ROTMAN, Advanced Modern Algebra, Prentice Hall, New Jersey, 2002.

8.2 Seminar / laboratory	Teaching methods Remarks
1. Groups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
2. Subgroups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
3. Generated subgroup. Subgroup lattice	Interactive exposure
	Explanation
	Conversation

	Didactical demonstration
4. Group homomorphisms	Interactive exposure
iii Group nomonorpiisms	• Explanation
	• Conversation
	Didactical demonstration
5. Cyclic groups. Order of an element	Interactive exposure
3. Cyclic groups. Order of an element	
	ExplanationConversation
	Didactical demonstration
6. Equivalence relations induced by a subgroup	
o. Equivalence relations induced by a subgroup	• Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
7. Normal subgroups. Factor group	• Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
8. Isomorphism theorems for groups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
9. Permutation groups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
10. Rings and fields	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
11. Subrings and subfields. Homomorphisms	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
12. Ideals. Factor ring	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
13. Special rings	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
14. Rings of polynomials	Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
Bibliography	

Bibliography

- 1. G. CALUGAREANU, P. HAMBURG, Exercises in basic ring theory, Kluwer, Dordrecht, 1998.
- 2. I.D. ION, C. NITA, D. POPESCU, N. RADU, Probleme de algebra, Editura Didactica si Pedagogica, Bucuresti, 1981.

- 3. I. PURDEA, C. PELEA, Probleme de algebra, EIKON, Cluj-Napoca, 2008.
- 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program
 - The course presents notions which often appear in other undergraduate courses.
 - The course offers a sufficiently general background for some highschool algebra topics and the opportunity to develop some problem solving skills useful for further teaching activities.

10. Evaluation

10.4 Course	Knowledge of basic	Test	25%
	concepts		
	Knowledge of basic results	Final exam	25%
10.5 Seminar/laborator	Examples and problem	Final exam	50%
	solving		
10.6 Minimum performance standards			
The final grade must be at least 5.			

Date Signature of course coordinator Signature of seminar coordinator

30.04.2019 Prof. PhD. Septimiu Crivei Prof. PhD. Septimiu Crivei

Date of approval Signature of the head of department

Prof.PhD. Octavian AGRATINI