SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science (English)
Qualification	

2. Information regarding the discipline

2.1 Name of the o	discipl	ine (en)	Geometrie I (Geometrie Analitică)/Analytic Geometry			Geometry	
(ro)							
2.2 Course coordinator		Prof. Dorin Andrica					
2.3 Seminar coordinator			Pr	Prof. Dorin Andrica			
2.4. Year of study	I	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
		Semester		evaluation		discipline	
2.8 Code of the		MLE0013					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					14
Evaluations					10
Other activities: homework					10

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	Basic knowledge of algebra, trigonometry and elementary

an am atury
geometry
6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

OT SPECIAL	e competencies acquired
rl es	C1.1 The ability to identify concepts, theories and use of specific description language
Professional competencies	C2.1 The ability to identify basic concepts used in the description of specific phenomena and processes
Pro	C4.5 The ability to produce a mathematical model for a certain problem.
70	CT1. Applying rigorous and efficient work rules, displaying a responsible attitude towards
sal	the scientific and educational and creative order to maximize their potential in specific
Transversal competencies	situations with respect to the basic principles and norms of professional ethics
Tra	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquiring theoretical and practical knowledge necessary for understanding the principles and methods of analytic geometry.
7.2 Specific objective of the discipline	• Introduction of basic notions analytic geometry (vectors, coordinates, straight lines, planes, conical sections, quadric surfaces, cylindrical, conical, conoidal and rotation surfaces), the study of their properties and of the relations between them, by means of the geometric transformations.

8. Content

8.1 Course	Teaching methods	Remarks
1. Vector algebra and coordinates (3 lectures)	Lecture, description,	
	exemplifications by	
	using multimedia	
	tools	
2. The straight line in the plane (1 lecture)	Lecture, description,	
	exemplifications by	
	using multimedia	
	tools	
3. The line and plane in space (2 lectures)	Lecture, description,	
	exemplifications by	

	using multimedia tools
4. Conical sections on the canonical equations (2 lectures)	Lecture, description, exemplifications by using multimedia tools
5. Cuadric surfaces on the canonical equations (1 lecture)	Lecture, description, exemplifications by using multimedia tools
6. Generated surfaces (1 lecture)	Lecture, description, exemplifications by using multimedia tools
7. Isometries and affine transformations in the plane (2 lectures)	Lecture, description, exemplifications by using multimedia tools
8. Isometries and affine transformations in space (2 lectures)	Lecture, description, exemplifications by using multimedia tools

Bibliography

- 1. D. Andrica, L. Topan Analytic Geometry, Cluj University Press, 2004
- 2.M. Audin Geometry, Springer, 2003
- 3.M. Berger Geometry (vol. I and II), Springer, 1987
- 4. P.A. Blaga Geometrie si grafica I (lecture notes)
- 5.P. A. Blaga Lectures on Classical Differential Geometry, Risoprint, 2005
- 6.D. Dogaru Elemente de grafica tridimensionala, Editura Stiintifica si Enciclopedica, 1988
- 7.P. A. Eggerton, W.S. Hall Computer Graphics (Mathematical First Steps), Prentice Hall, 1999
- 8.N.N. Golovanov Geometriceskoe modelirovanie, Izd. Fizmatlit, 2002 (in Russian)
- 9.M.E. Mortenson Geometric Modeling (2nd edition), John Wiley, 1995
- 10.D.F. Rogers, J.A. Adams Mathematical Elements for Computer Graphics (2nd edition), McGraw-Hill, 1990
- 11. http://www.cs.ubbcluj.ro/~pablaga/geoinf/geometrie.html

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Vector algebra and coordinates (3 seminars)	Description,	
	explanation,	
	independent and/or	
	team study	
2. The straight line in the plane (1 seminar)	Description,	
	explanation,	
	independent and/or	
	team study	
3. The line and plane in space (2 seminars)	Description,	
	explanation,	
	independent and/or	
	team study	

4. Conical sections on the canonical equations (2 seminars)	Description, explanation,
	independent and/or
	team study
5. Cuadric surfaces on the canonical equations (1	Description,
seminar)	explanation,
	independent and/or
	team study
6. Generated surfaces (1 seminar)	Description,
	explanation,
	independent and/or
	team study
7. Isometries and affine transformations in the	Description,
plane (2 seminars)	explanation,
	independent and/or
	team study
8. Isometries and affine transformations in space	Description,
(2 seminars)	explanation,
	independent and/or
	team study

Bibliography

- 1. S.L. Atanasijan, V. I. Glizburg Culegere de probleme de geometrie, vol. I, Eksmo Education, Moscova, 2000 (in Russian)
- 2. Cezar Coșniță ș.a. Culegere de probleme de geometrie analitică, Editura didactică și pedagogică, 1963
- 3. D. Kletenik Problems in Analytic Geometry, Mir Publishers, Moscow, 1969
- 3. C. Ionescu-Bujor, O. Sacter Exerciții și probleme de geometrie analitică și diferențială, volumul I,Editura didactică și pedagogică, 1963
- 4. F. Rado ş.a. Culegere de probleme de geometrie, Lito UBB, 1979
- 5. Ion D. Teodorescu Geometrie analitică și elemente de algebră liniară, culegere de probleme (ediția a IIa), Editura didactică și pedagogică, 1971

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The notions assimilated are essential for any prospective math teacher and they will be, as well, very useful in any kind of activity related to computer graphics and CAGD.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course		Final written exam	75%
10.5 Seminar/lab activities		Active attendance, solving	25%

>					
	<u> </u>				
	Date	Signature of course coordinator	Signature of seminar coordinator		
	.April 30, 2019.	Prof. dr.Dorin Andrica	Prof. dr. Dorin Andrica		
	Date of approval	Signature of the head of department			
		Prof. dr. Octavian Agratini			

10.6 Minimum performance standards

the homeworks