SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Special Chapters of Numerical Analysis					
(ro)			Capitole Speciale de Analiza Numerica				
2.2 Course coordinator			Assoc. Prof. Teodora Catinas				
2.3 Seminar coordinator		As	Assoc. Prof. Teodora Catinas				
2.4. Year of study	2	2.5 Semester	4	2.6. Type of evaluation	Ε	2.7 Type of discipline	Optional
2.8 Code of the discipline		MME3405					

3. Total estimated time (hours/semester of didactic activities)

		,			
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					44
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					20
Evaluations					30
Other activities:					-
3.7 Total individual study hours		164			
2 0 T - t - 1 b		200			

3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	• Knowledge of some classical and modern procedures of Numerical Analysis and the ability to work with them. Improvment of programming skills in MATLAB for implementing numerical algorithms.

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	• Room with blackboard and computers.

6. Specific competencies acquired

orpeenn	e competencies acquirea
	• C1.1: Identifications of notions, descriptions of theories and use of the specific language
	• C3.1 Description of concepts, theory and models used in application domain
Professional competencies	• C3.2 Identify and explain the basic computer science models corresponding to application domain
etei	• C3.3 Use of computer science and mathematical models and tools for solving specific
du	problems in the application field
COL	• C3.4 Data and model analysis
al	• C4.1 Defining basic concepts, theory and mathematical models
ion	C4.2 Interpretation of mathematical models
GSS	• C4.3 Identifying the appropriate models and methods for solving real-life problems
rof	• C4.5 Embedding formal models in applications from various areas
Р	• C5.3: Construction and development of logic proofs for some mathematical results, with
	identification of hypotesis and conclusions
	• CT1 Application of efficient and organized work rules, of responsible attitudes towards the
S	didactic-scientific domain, to creatively value one's own potential, with the respect towards
sal	the principles and norms of professional etic.
ver ter	• CT3 Use of efficient methods and techniques to learn, inform, research and develop the
nns' npe	abilities to value the knowledge, to adapt to requirements of a dynamic society and to
Transversal competencies	communicate in Romanian language and in a language of international circulation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of some classical and modern concepts of Numerical Analysis and the improvment of the capacity of using them in problems. Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Consolidation of theoretical and practical knowledge about the basic numerical algorithms. Acquire some theoretical and practical knowledge regarding classical and modern procedures of numerical analysis. Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics. Ability to use mathematical software and advanced methods of numerical analysis and programming for numerical solving of problems. Ability to apply numerical algorithms to solve practical and real life problems. Ability to model and analyze from a mathematical point of view real processes from other sciences, economics and engineering.

8.1	Course	Teaching methods	Remarks
1.	Introductory notions.	Exposure: description,	
		explanation, examples.	
2.	Positive linear operators: preliminaries,	Exposure: description,	
	definitions properties, Bohman-Korovkin	explanation, examples,	
	theorems.	proofs.	
3.	Moduli of continuity, moduli of smoothness.	Exposure: description,	
	Properties.	explanation, examples,	
		proofs.	
4.	The approximation error. K–functionals.	Exposure: description,	
	Properties.	explanation, examples,	
		proofs, dialogue.	
5.	Bernstein operators.	Exposure: description,	
		explanation, examples,	
		proofs, dialogue.	
6.	Operators of Bernstein type: Schurer, Cheney-	Exposure: description,	
	Sharma, Stancu, Kantorovich and Durrmeyer	explanation, examples,	
	operators.	proofs.	
7.	Construction of some approximation processes:	Exposure: description,	
	Bleimann-Butzer-Hahn, Mastroianni, Szasz,	explanation, examples,	
-	Baskakov, Meyer-Konig, Zeller operators.	proofs.	
8.	Least square approximation. Discrete least	Exposure: description,	
	squares approximation: linear and polynomial least squares.	explanation, examples,	
	*	proofs, dialogue.	
9.	Orthogonal polynomials and least squares	Exposure: description,	
	approximation.	explanation, examples,	
		proofs, dialogue.	
10.	Extensions of some classical univariate	Exposure: description,	
	interpolation methods to multivariate case:	explanation, examples.	
	extension of Lagrange, Newton, Hermite and		
11	Lidstone interpolation.		
11.	Interpolation by means of Newton's algorithm. Interpolation processes on domains with curved	Exposure: description,	
	sides	explanation, examples,	
10		proofs.	
12.	Some applications of the interpolation processes to	Exposure: description,	
	surfaces generation.	explanation, examples,	
		proofs.	1

Bibliography

- 1. O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmbitaş, *Analiză Numerică și Teoria Aproximării*, vol. III, Ed. Presa Univ. Clujeană, 2002;
- 2. R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 2010.
- 3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză numerică, Ed. Presa Univ. Clujeană, 2010.
- **4.** Gh. Coman, T. Cătinaș, și alții, *Interpolation operators*, Ed. Casa Cărții de Știință, Cluj-Napoca, 2004.
- 5. Gh. Coman, I. Chiorean, T. Cătinaș, *Numerical Analysis. An Advanced Course*, Ed. Presa Univ. Clujeană, 2007.
- **6.** S. D. Conte, Carl de Boor, *ELEMENTARY NUMERICAL ANALYSIS. An Algorithmic Approach,* SIAM, 2017.
- 7. W. Gander, M.J. Gander, F. Kwok, Scientific Computing, Springer Internat. Publishing, 2014.
- 8. W. Gautschi, Numerical Analysis. An introduction, Birkhauser, Basel, 1997
- 9. R. Plato, Concise Numerical Mathematics, Amer. Math. Soc., 2003.
- **10.** D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbitas, *Analiză Numerică și Teoria Aproximării*, vol. I, Ed. Presa Univ. Clujeană, 2001;
- **11.** D.D. Stancu, Gh. Coman, P. Blaga, *Analiză Numerică și Teoria Aproximării*, vol. II, Ed. Presa Univ. Clujeană, 2002;

12. R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ	v. Clujeană, 2007.	
8.2 Seminar/Laboratory	Teaching methods	Remarks
1-2 Introductory examples and problems.	Explanation, dialogue,	
	practical examples.	
3-4 Generation of the classical Bernstein	Explanation, dialogue,	
polynomials.	examples.	
5-6 Examples of some Bernstein-type operators.	Explanation, dialogue,	
	examples.	
	-	
7-8 Discrete least square approximation (linear and	Explanation, dialogue,	
polynomial) and continuous least square	examples.	
approximation. Practical examples.	_	
9-10 Interpolation by means of Newton's algorithm.	Explanation, dialogue,	
Computation of some tensorial product and boolean sum operators for domains with curved	examples.	
sides. Graphical representations.		
11-12 Generation of some roof surfaces. Graphical	Explanation, dialogue,	
representations. Ending of evaluation for	examples.	
seminar/lab work.		
Dibliggeneraber		

Bibliography

- 1. R. L. Burden, J. D. Faires, Numerical Analysis, PWS Publishing Company, 2010.
- 2. W. Gander, M.J. Gander, F. Kwok, Scientific Computing, Springer Internat. Publishing, 2014.
- 3. A. Kharab, R. B. Guenther, *An introduction to numerical methods. A Matlab approach,* Taylor&Francis Group, 2006.
- 4. R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	 know the basic principles of Numerical Analysis; apply the course concepts problem solving 	Written exam.	60%		
10.5 Seminar/lab activities	 be able to implement course concepts and the numerical algorithms apply techniques for different practical problems 	Evaluation and continuous observations during the semester. Study for preparing a synthesis work.	40%		
10.6 Minimum performance standards					
➤ At least grade 5 (from a scale of 1 to 10) at Sections 10.4 and 10.5.					

Date	Signature of course coordinator	Signature of seminar coordinator	
22.04.2019	Conf. univ. Teodora Cătinaș	Conf. univ. Teodora Cătinaș	
Date of approval	Signature of the	he head of department	
	Prof. univ. Octavian Agratini		