SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Reaction-Diffusion Systems							
2.2 Course coordinator Prof.PhD. Radu Precup							
2.3 Seminar coordinator				Prof.PhD. Radu Precup			
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	DS
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					8
Evaluations					16
Other activities:					-
2577 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

3.7 Total individual study hours	90
3.8 Total hours per semester	132
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	Partial differential equations; Functional analysis
5.2. for the seminar /lab	Partial differential equations; Functional analysis
activities	

6. Specific competencies acquired

Professional	competencies	•	Use of the theory of linear partial differential equations and of the basic principles of functional analysis for the investigation of nonlinear evolution equations Ability to apply abstract principles of nonlinear analysis to evolution problems
Transversal	competencies	•	Understand the role of partial differential equations in mathematical modelling of real evolution phenomena

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquire knowledge about some main techniques of investigation of nonlinear problems for evolution equations and systems
7.2 Specific objective of the discipline	 Rewrite boundary value problems as operator equations using the solution operator Apply general fixed point principles to the operator equations associated to evolution problems Turing's theory of morphogenesis based on reaction-diffusion systems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Summary of basic notions and results from the	Exposure: description,	
theory of linear evolution equations	explanation, dialogue,	
	examples	
2. The nonhomogeneous heat equation in H^{-1}	Exposure: description,	
	explanation, dialogue,	
	examples	
3. Operator formulation of semilinear problems	Exposure: description,	
for the heat equation	explanation, dialogue,	
	examples	
4. Application of Banach's fixed point theorem	Exposure: description,	
	explanation, examples,	
	proof, dialogue	
5. Application of Schauder's fixed point theorem	Exposure: description,	
	explanation, examples,	
	proof	
6. Application of Leray-Schauder's continuation	Exposure: description,	
principle.	explanation, examples,	
	proof, dialogue	
7. The nonhomogeneous wave equation in H^{-	Exposure: explanation,	
1}	examples, dialogue	
8. Semilinear wave equation with a Lipschitz	Exposure: description,	
continuous nonlinearity	explanation, examples	
9. More general existence results based on	Exposure: description,	

topological principles	explanation, examples,
	proofs
10. Pattern formation. Turing instability	Exposure: description,
	explanation, examples
11. Activator-inhibitor systems. Conditions for	Exposure: description,
Turing instability	explanation, examples,
	discussion of case studies
12. Bifurcations with domain size	Exposure: description,
	explanation, examples
13. Mechanochemical models	Exposure: description,
	explanation, proofs,
	examples
14. Conclusions and further study	Exposure: description,
	examples, dialogue

Bibliography

- 1. R. Precup, Linear and Semilinear Partial Differential Equations, De Gruyter, Berlin, 2012.
- 2. L.C. Evans, Partial Differential Equations, Amer. Math. Soc., 2010.
- 3. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011
- 4. N. F. Britton, Essential Mathematical Biology, Springer, 2003.
- 5. J.D. Murray, Mathematical Biology, Springer, 2002.

8.2 Seminar	Teaching methods	Remarks
1. Exemplification of some basic notions and	Exercise, dialogue, team	
results from the theory of linear evolution	work	
partial differential equations		
2. Heat, wave and Schreodinger equations	Exercise, dialogue, team	
	work	
3. Heat equation with state-depending source;	Exercise, explanation,	
examples	dialogue, team work	
4. Examples of parabolic problems with Lipschitz	Exercise, explanation,	
nonlinearities	dialogue, team work	
5. Examples of parabolic problems with	Exercise, explanation,	
nonlinearities having a growth at most linear	dialogue, team work	
6. Linear wave equations; basic formulas	Exercise, explanation,	
	dialogue, team work	
7. Nonlinear wave equations; conservation of	Exercise, explanation,	
energy	dialogue, team work	
8. Existence of solutions; Lipschitz nonlinearities	Exercise, explanation,	
	dialogue, team work	
9. Sign conditions	Exercise, explanation,	
	dialogue	
10. Problems of eigenvalues and eigenvectors	Exercise, explanation,	
	dialogue, team work	
11. Pattern formation. Turing instability	Exercise, explanation,	
	dialogue, team work	
12. Activator-inhibitor systems. Conditions for	Exercise, explanation,	
Turing instability	dialogue	
13. Bifurcations with domain size	Exercise, explanation,	
	dialogue, team work	
14. Conclusions	Exercise, explanation,	
	dialogue, team work	
Bibliography		

- 1. R. Precup, Linear and Semilinear Partial Differential Equations, De Gruyter, Berlin, 2012.
- 2. L.C. Evans, Partial Differential Equations, Amer. Math. Soc., 2010.
- 3. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011
- 4. N. F. Britton, Essential Mathematical Biology, Springer, 2003.
- 5. J.D. Murray, Mathematical Biology, Springer, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The contents of the course correspond to current research themes in nonlinear evolution equations in connexion with mathematical models from physics, chemistry and biology.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course		Written exam	60%			
		Continuous observations	10%			
10.5 Seminar/lab activities		-Practical examination	20%			
		-continuous observations	10%			
10.6 Minimum performance standards						
At least grade 5 (from a scale of 1 to 10) at both written exam and seminar practical examination						

Date Signature of course coordinator Signature of seminar coordinator

April 9, 2019 Prof.PhD. Radu Precup Prof.PhD. Radu Precup

Date of approval Signature of the head of department

April 15, 2019 Prof.PhD. Octavian Agratini