SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Qualitative theory of differential equations							
2.2 Course coordinator Conf. dr. Adriana Buică							
2.3 Seminar coordinator				Conf. dr. Adriana Bı	uică		
2.4. Year of	2	2.5	3	2.6. Type of	C	2.7 Type of	0
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					-
3.7 Total individual study hours 116					

3.7 Total individual study hours	116
3.8 Total hours per semester	158
3.9 Number of ECTS credits	

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis; Differential Equations
4.2. competencies	Logical thinking, as well mathematical notions and properties from
	the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

0.00	 ie competencies acquireu	
Professional competencies	Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics.	
Transversal competencies	 Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems. Ability for continuous self-perfecting and study. 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To be familiar with the important problems that appear when studying the existence and stability of periodic solutions for periodic differential 	•
	systems	
7.2 Specific objective of the	To be able to prove the main results	•
discipline	 To be able to apply the main results in examples and physical models 	
	 To have an intuition on the variety of problems that can appear in 	
	studying the differential equations	

8. Content

8.1 Course	Teaching methods	Remarks
1. Linear systems with periodic coefficients.	Interactive exposure	
Floquet theory.	Explanation	
	Conversation	
	Demonstration	
2. Periodic solutions of linear systems: existence	Interactive exposure	
and stability.	Explanation	
	Conversation	
	Demonstration	
3. The Poincarè translation map for nonlinear	Interactive exposure	
nonautonomous systems.	Explanation	
	Conversation	
	Demonstration	
4. Periodic solutions of weakly nonlinear	Interactive exposure	
nonautonomous systems in the noncritical	Explanation	
case.	Conversation	
	Demonstration	
5. Periodic solutions of weakly nonlinear	Interactive exposure	
nonautonomous systems in the critical case:	Explanation	
the method of averaging. I	Conversation	
	Demonstration	
6. The method of averaging. II	Interactive exposure	
	Explanation	
	Conversation	
	Demonstration	
	Interactive exposure	

7. The method of averaging. III	Explanation
7. The method of averaging. III	
	Conversation
	Demonstration
8. First integrals and inverse Jacobi multipliers	Interactive exposure
for nonautonomous systems.	Explanation
	Conversation
	Demonstration
9. Periodic solutions for systems with first	Interactive exposure
integrals and/or inverse Jacobi multipliers.	Explanation
	Conversation
	Demonstration
10. The averaging method applied to obtain the	Interactive exposure
existence and stability of limit cycles for planar	Explanation
autonomous systems.	Conversation
·	Demonstration
11. Action-angle variables for higher dimensional	Interactive exposure
autonomous systems.	Explanation
· ·	Conversation
	Demonstration
12. The averaging method applied to obtain the	Interactive exposure
existence and stability of limit cycles for	Explanation
higher dimensional autonomous systems.	Conversation
·	Demonstration
13. Poincaré-Andronov-Hopf bifurcation.	Interactive exposure
·	Explanation
	Conversation
	Demonstration
14. Multiple Hopf bifurcation.	Interactive exposure
1	Explanation
	Conversation
	Demonstration
Ribliography	

Bibliography

- 1. A. Buică, Periodic solutions for nonlinear systems, Cluj University Press, 2006.
- 2. A. Buică, J. Giné, J. Llibre, Periodic solutions for nonlinear for nonlinear periodic differential systems: the second order bifurcation function, Topological Methods in Nonlinear Analysis, 43 (2014), 403-419.
- 3. A. Buică, I.A. García, Inverse Jacobi last multipliers and first integrals for nonautonomous differential systems, Zeitschrift für angewandte Mathematik und Physik, in press.
- 4. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 5. J.K. Hale, Ordinary differential equations, Krieger, 1980.
- 6. P. Hartman, Ordinary differential equations, SIAM, 2002.
- 7. M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Elsevier, 2013.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
2. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
3. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
4. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
5. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
	Explanation	

6. Various problems and exercises on the theme	Conversation
of the same week lecture.	
7. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
8. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
9. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
10. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
11. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
12. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
13. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
14. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation

Bibliography

- 1. A. Buică, Periodic solutions for nonlinear systems, Cluj University Press, 2006.
- 2. A. Buică, J. Giné, J. Llibre, Periodic solutions for nonlinear for nonlinear periodic differential systems: the second order bifurcation function, Topological Methods in Nonlinear Analysis, 43 (2014), 403-419.
- 3. A. Buică, I.A. García, Inverse Jacobi last multipliers and first integrals for nonautonomous differential systems, Zeitschrift für angewandte Mathematik und Physik, in press.
- 4. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 5. J.K. Hale, Ordinary differential equations, Krieger, 1980.
- 6. P. Hartman, Ordinary differential equations, SIAM, 2002.
- 7. M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Elsevier, 2013.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is synchronized with the curriculum of most of the important universities from our country and from abroad where the applied mathematics plays an important role.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	To know the notions and	Two ongoing tests (week 6	60%
	their properties by	and week 12)	
	examples or		
	counterexamples. To be		
	able to prove the main		
	theoretical results.		
	To develop a specific	Report	20%
	subject by reading the		
	bibliography.		
10.5 Seminar/lab activities	Solving problems	Evaluation of the	20%
	skills	homeworks	
	Active participation in		
	the classroom		

The minimum passing grade is 5.

Date Signature of course coordinator Signature of seminar coordinator

22-04-2018 Conf. dr. Adriana Buica Conf. dr. Adriana Buica

Date of approval Signature of the head of department

Prof. dr. Octavian Agratini